咨询与建议

限定检索结果

文献类型

  • 5,804 篇 会议
  • 3,341 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,347 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,675 篇 工学
    • 3,396 篇 电气工程
    • 3,198 篇 计算机科学与技术...
    • 1,627 篇 软件工程
    • 1,426 篇 信息与通信工程
    • 845 篇 电子科学与技术(可...
    • 788 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 514 篇 光学工程
    • 507 篇 生物工程
    • 327 篇 仪器科学与技术
    • 312 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 49 篇 航空宇航科学与技...
  • 2,300 篇 理学
    • 1,206 篇 物理学
    • 714 篇 数学
    • 616 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 153 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,133 篇 医学
    • 1,674 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 143 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 466 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 189 篇 图书情报与档案管...
  • 61 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 15 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,006 篇 neural networks
  • 1,001 篇 deep learning
  • 733 篇 convolutional ne...
  • 613 篇 feature extracti...
  • 573 篇 signal processin...
  • 474 篇 convolutional ne...
  • 433 篇 image segmentati...
  • 426 篇 image processing
  • 376 篇 training
  • 277 篇 convolution
  • 247 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 187 篇 machine learning
  • 178 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 computational mo...
  • 166 篇 deep neural netw...
  • 155 篇 image classifica...
  • 147 篇 image coding
  • 137 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,772 篇 英文
  • 257 篇 中文
  • 228 篇 其他
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9347 条 记 录,以下是371-380 订阅
排序:
Affine registration of thermal images of plantar feet using convolutional neural networks
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 第PartB期95卷
作者: Aferhane, Asma Bouallal, Doha Douzi, Hassan Harba, Rachid Vilcahuaman, Luis Arbanil, Hugo Ibn Zohr Univ IRF SIC Lab Agadir Morocco Orleans Univ PRISME Lab Orleans France PUCP Univ Lima Peru Hosp Natl Mayo Lima Peru
The use of a thermal camera to detect abnormal plantar foot temperature changes can be an effective way to identify the early signs of diabetic foot ulceration. In this work, we performed the affine registration of th... 详细信息
来源: 评论
Removal of Speckle Noises from Ultrasound images Using Parallel Convolutional neural Network
收藏 引用
CIRCUITS SYSTEMS AND signal processing 2023年 第8期42卷 5041-5064页
作者: Shen, Zhengjie Tang, Chen Xu, Min Lei, Zhenkun Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Dalian Univ Technol State Key Lab Struct Anal Ind Equipment Dalian 116024 Peoples R China
Speckle noises widely exist in ultrasound images. They seriously affect the quality of images and cause the doctor to make mistakes in diagnosis. In this paper, we propose a three-path parallel convolutional neural ne... 详细信息
来源: 评论
LULC Change Detection Using Combined Machine and Deep Learning Classifiers  7
LULC Change Detection Using Combined Machine and Deep Learni...
收藏 引用
IEEE 7th International Conference on Advanced Technologies, signal and image processing (ATSIP)
作者: Tahraoui, Ahmed Kheddam, Radja USTHB Image Proc & Radiat Lab Fac Elect Engn Algiers Algeria
In this paper we shall describe a method for land use and land cover (LULC) change detection in multi-date multispectral images using a well known post-classification comparison (PCC) principle. The novelty of the pro... 详细信息
来源: 评论
Detection and Classification of Neurodegenerative Diseases by Automatic Speech Analysis  7
Detection and Classification of Neurodegenerative Diseases b...
收藏 引用
IEEE 7th International Conference on Advanced Technologies, signal and image processing (ATSIP)
作者: Kehili, Ahlem Bouafif, Lamia Cherif, Adnen Univ Tunis Manar ATSSEE Lab FST Tunis 2092 Tunisia
This study presents a novel non-invasive method for detecting and classifying neuro-degenerative diseases such as Parkinson's (PD) and Alzheimer's (AD) through automatic speech analysis and artificial intellig... 详细信息
来源: 评论
An efficient deep convolutional neural network with features fusion for radar signal recognition
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第2期82卷 2871-2885页
作者: Si, Weijian Wan, Chenxia Deng, Zhian Harbin Engn Univ Coll Informat & Commun Engn Harbin 150001 Peoples R China Harbin Engn Univ Key Lab Adv Marine Commun & Informat Technol Minist Ind & Informat Technol Harbin 150001 Peoples R China
This paper proposes an efficient deep convolutional neural network with features fusion for recognizing radar signal, which mainly includes data pre-processing, features extraction, multi-features fusion, and classifi... 详细信息
来源: 评论
Binary stochastic Flip Optimization for Training Binary neural Networks
Binary Stochastic Flip Optimization for Training Binary Neur...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: Shibuya, Tatsukichi Inoue, Nakamasa Kawakami, Rei Sato, Ikuro Department of Computer Science Institute of Science Tokyo Tokyo Japan Department of Systems and Control Engineering Institute of Science Tokyo Tokyo Japan Denso IT Laboratory Tokyo Japan
For deploying deep neural networks on edge devices with limited resources, binary neural networks (BNNs) have attracted significant attention, due to their computational and memory efficiency. However, once a neural n...
来源: 评论
Visual Cardiac signal Classifiers: A Deep Learning Classification Approach for Heart signal Estimation From Video
收藏 引用
IEEE ACCESS 2024年 12卷 144377-144394页
作者: Moustafa, Mohamed Farooq, Muhammad Ali Elrasad, Amr Lemley, Joseph Corcoran, Peter Univ Galway Dept Elect & Elect Engn Imaging Lab C3I Galway H91 TK33 Ireland FotoNation Sensing Team Galway H91 V0TX Ireland
Heart rate is a crucial metric in health monitoring. Traditional computer vision solutions estimate cardiac signals by detecting physical manifestations of heartbeats, such as facial discoloration caused by blood oxyg... 详细信息
来源: 评论
EBSTracker: event-based space multi-object tracking with bidirectional self-attention and multi-stage data association
收藏 引用
signal image AND VIDEO processing 2025年 第1期19卷 1-9页
作者: Zhou, Xiaoli Bei, Chao CASIC Space Engn Dev Co Ltd Beijing 100854 Peoples R China Second Res Acad CASIC Grad Sch Beijing 100854 Peoples R China
Event cameras are preferred for space object tracking due to their high temporal resolution and ability to capture dim light, fast-moving objects, and other challenging space objects. However, existing event trackers ... 详细信息
来源: 评论
A semi-supervised framework with generative adversarial network for pansharpening
收藏 引用
signal image AND VIDEO processing 2025年 第6期19卷 1-12页
作者: Wang, Yu-Xuan Huang, Ting-Zhu Ran, Ran Wen, Rui Deng, Liang-Jian Univ Elect Sci & Technol China Chengdu 611731 Sichuan Peoples R China
The pansharpening method of fusing remote sensing satellite photography to obtain higher quality images is an increasingly hot research topic. However, the scarcity of the ground truth makes it difficult to conduct su... 详细信息
来源: 评论
Multi-scale Unet-based feature aggregation network for lightweight image deblurring
收藏 引用
signal image AND VIDEO processing 2025年 第1期19卷 1-10页
作者: Yang, Yancheng Gai, Shaoyan Da, Feipeng Southeast Univ Sch Automat Nanjing 210096 Jiangsu Peoples R China Minist Educ Key Lab Measurement & Control Complex Syst Engn Nanjing 210096 Jiangsu Peoples R China
The single image deblurring task has made remarkable progress, with convolutional neural networks exhibiting extraordinary performance. However, existing methods maintain high-quality reconstruction through an excessi... 详细信息
来源: 评论