咨询与建议

限定检索结果

文献类型

  • 5,804 篇 会议
  • 3,341 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,347 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,675 篇 工学
    • 3,396 篇 电气工程
    • 3,198 篇 计算机科学与技术...
    • 1,627 篇 软件工程
    • 1,426 篇 信息与通信工程
    • 845 篇 电子科学与技术(可...
    • 788 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 514 篇 光学工程
    • 507 篇 生物工程
    • 327 篇 仪器科学与技术
    • 312 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 49 篇 航空宇航科学与技...
  • 2,300 篇 理学
    • 1,206 篇 物理学
    • 714 篇 数学
    • 616 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 153 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,133 篇 医学
    • 1,674 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 143 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 466 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 189 篇 图书情报与档案管...
  • 61 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 15 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,006 篇 neural networks
  • 1,001 篇 deep learning
  • 733 篇 convolutional ne...
  • 613 篇 feature extracti...
  • 573 篇 signal processin...
  • 474 篇 convolutional ne...
  • 433 篇 image segmentati...
  • 426 篇 image processing
  • 376 篇 training
  • 277 篇 convolution
  • 247 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 187 篇 machine learning
  • 178 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 computational mo...
  • 166 篇 deep neural netw...
  • 155 篇 image classifica...
  • 147 篇 image coding
  • 137 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,772 篇 英文
  • 257 篇 中文
  • 228 篇 其他
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9347 条 记 录,以下是401-410 订阅
排序:
Learning Nonlocal Sparse and Low-Rank Models for image Compressive Sensing: Nonlocal sparse and low-rank modeling
收藏 引用
IEEE signal processing MAGAZINE 2023年 第1期40卷 32-44页
作者: Zha, Zhiyuan Wen, Bihan Yuan, Xin Ravishankar, Saiprasad Zhou, Jiantao Zhu, Ce Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore Westlake Univ Sch Engn Hangzhou 310024 Zhejiang Peoples R China Michigan State Univ Dept Computat Math Sci & Engn & Biomed Engn E Lansing MI 48824 USA Univ Macau Fac Sci & Technol Dept Comp & Informat Sci Macau 999078 Peoples R China Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Peoples R China
The compressive sensing (CS) scheme exploits many fewer measurements than suggested by the Nyquist-Shannon sampling theorem to accurately reconstruct images, which has attracted considerable attention in the computati... 详细信息
来源: 评论
Multi-module attention-guided deep learning framework for precise gastrointestinal disease identification in endoscopic imagery
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 第PartB期95卷
作者: Khan, Sultan Daud Basalamah, Saleh Lbath, Ahmed Natl Univ Technol Islamabad Pakistan Umm Al Qura Univ Mecca Saudi Arabia Univ Grenoble Alpes Grenoble France
The automated classification of gastrointestinal endoscopy images holds immense importance in modern health care. It streamlines the diagnostic process by enabling faster and more accurate identification of gastrointe... 详细信息
来源: 评论
CT-Bound: Robust Boundary Detection From Noisy images Via Hybrid Convolution and Transformer neural Networks  26
CT-Bound: Robust Boundary Detection From Noisy Images Via Hy...
收藏 引用
26th International Workshop on Multimedia signal processing
作者: Xu, Wei Luo, Junjie Guo, Qi Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
We present CT-Bound, a robust and fast boundary detection method for very noisy images using a hybrid Convolution and Transformer neural network. The proposed architecture decomposes boundary estimation into two tasks... 详细信息
来源: 评论
An optimized profound memory-affiliated de-noising of aerial images through deep neural network for disaster management
收藏 引用
signal image AND VIDEO processing 2023年 第8期17卷 3983-3991页
作者: Raj, T. Ajith Bosco Pushpalatha, C. Ahilan, A. PSN Coll Engn & Technol Dept Elect & Commun Engn Tirunelveli India Arunachala Coll Engn Women Dept Comp Sci & Engn Kanyakumari India
De-noising is an effective mechanism for removing the aberration present in the image and has been exploited in diverse fields. In this proposed research work, a novel deep learning-based profound memory-affiliated ne... 详细信息
来源: 评论
Enhancing image steganalysis via integrated reinforcement learning and dilated convolution techniques
收藏 引用
signal image AND VIDEO processing 2024年 第SUPPL 1期18卷 1-16页
作者: Sun, Yuan Puyang Vocat & Tech Coll Sch Math & Informat Engn Puyang 457000 Henan Peoples R China
In the wake of unparalleled expansion in digital communication platforms, the imperative to bolster security and privacy measures has escalated. Within this landscape, image steganalysis emerges as a pivotal domain co... 详细信息
来源: 评论
STA-Former: enhancing medical image segmentation with Shrinkage Triplet Attention in a hybrid CNN-Transformer model
收藏 引用
signal image AND VIDEO processing 2024年 第2期18卷 1901-1910页
作者: Liu, Yuzhao Han, Liming Yao, Bin Li, Qing Chinese Acad Sci Mfg Elect Res & Dev Ctr Inst Microelect 3 Beitucheng West Rd Beijing 100029 Peoples R China Univ Chinese Acad Sci Sch Integrated Circuits Zhongguancun South Rd Beijing 100020 Peoples R China
Convolutional neural networks (CNNs) have found extensive use in medical image segmentation tasks. However, they encounter limitations in capturing long-range semantic interactions. Conversely, Transformers excel at h... 详细信息
来源: 评论
Deep Learning-Based Watermarking Techniques Challenges: A Review of Current and Future Trends
收藏 引用
CIRCUITS SYSTEMS AND signal processing 2024年 第7期43卷 4339-4368页
作者: Ben Jabra, Saoussen Ben Farah, Mohamed Univ Sousse Natl Engn Sch Sousse LimT Lab Sousse Tunisia Birmingham City Univ Birmingham B4 7XG England
The digital revolution places great emphasis on digital media watermarking due to the increased vulnerability of multimedia content to unauthorized alterations. Recently, in the digital boom in the technology of hidin... 详细信息
来源: 评论
Low-complexity channel estimation for V2X systems using feed-forward neural networks
收藏 引用
IET COMMUNICATIONS 2024年 第13期18卷 789-798页
作者: Mehr, Pooria Tabesh Koufos, Konstantinos El Haloui, Karim Dianati, Mehrdad Univ Warwick WMG Coventry England
In vehicular communications, channel estimation is a complex problem due to the joint time-frequency selectivity of wireless propagation channels. To this end, several signal processing techniques as well as approache... 详细信息
来源: 评论
Applying Deep Learning neural Network with Randomly Downscaled image and Data Augmentation to Multiscale image Enlargement
收藏 引用
Sensors and Materials 2024年 第1期36卷 91-104页
作者: Yeh, Ming-Tsung Lo, Wei-Yin Chung, Yi-Nung Cai, Hong-Yi Department of Electrical Engineering National Chin-Yi University of Technology 57 Sec. 2 Zhongshan Rd. Taiping Dist Taichung411030 Taiwan Department of Electrical Engineering National Changhua University of Education No. 1 Jinde Rd. Changhua County Changhua City50007 Taiwan
Digital image applications have been extensively utilized in entertainment, education, research, medicine, and industry. Many images should be resized for better demonstration. In general, image resizing is performed ... 详细信息
来源: 评论
Arithmetic Optimization for Coinciding Diabetic Retinopathy and Diabetic Macular Edema Grading based on Self-Attention Convolutional neural Network
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 第PartB期95卷
作者: Devi, T. M. Karthikeyan, P. Syed Ammal Engn Coll Dept Comp Sci & Engn Madurai Rameswaram Rd Landai Tamil Nadu India Thiagarajar Coll Engn Dept Informat Technol V3JJ VJ3 Thiruparankundram Tamil Nadu India
This paper proposes a Self-Attention Convolutional neural Network (SACNN) optimized with Arithmetic Optimization Algorithm (AOA) for coinciding Diabetic Retinopathy (DR) and Diabetic Macular Edema Grading (DMEG) (SACN... 详细信息
来源: 评论