咨询与建议

限定检索结果

文献类型

  • 5,804 篇 会议
  • 3,341 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,347 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,675 篇 工学
    • 3,396 篇 电气工程
    • 3,198 篇 计算机科学与技术...
    • 1,627 篇 软件工程
    • 1,426 篇 信息与通信工程
    • 845 篇 电子科学与技术(可...
    • 788 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 514 篇 光学工程
    • 507 篇 生物工程
    • 327 篇 仪器科学与技术
    • 312 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 49 篇 航空宇航科学与技...
  • 2,300 篇 理学
    • 1,206 篇 物理学
    • 714 篇 数学
    • 616 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 153 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,133 篇 医学
    • 1,674 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 143 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 466 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 189 篇 图书情报与档案管...
  • 61 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 15 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,006 篇 neural networks
  • 1,001 篇 deep learning
  • 733 篇 convolutional ne...
  • 613 篇 feature extracti...
  • 573 篇 signal processin...
  • 474 篇 convolutional ne...
  • 433 篇 image segmentati...
  • 426 篇 image processing
  • 376 篇 training
  • 277 篇 convolution
  • 247 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 187 篇 machine learning
  • 178 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 computational mo...
  • 166 篇 deep neural netw...
  • 155 篇 image classifica...
  • 147 篇 image coding
  • 137 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,772 篇 英文
  • 257 篇 中文
  • 228 篇 其他
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9347 条 记 录,以下是461-470 订阅
排序:
Interpretable Graph signal Denoising Using Regularization by Denoising  32
Interpretable Graph Signal Denoising Using Regularization by...
收藏 引用
32nd European signal processing Conference (EUSIPCO)
作者: Kojima, Hayate Higashi, Hiroshi Tanaka, Yuichi Tokyo Univ Agr & Technol Tokyo Japan Osaka Univ Osaka Japan
In this paper, we propose an interpretable denoising method for graph signals using regularization by denoising (RED). RED is a technique developed for image restoration that uses an efficient (and sometimes black-box... 详细信息
来源: 评论
Bayesian Inference for Non-Linear Forward Model by Using a VAE-Based neural Network Structure
收藏 引用
IEEE TRANSACTIONS ON signal processing 2024年 72卷 1400-1411页
作者: Zhang, Yechuan Zheng, Jian-Qing Chappell, Michael Univ Oxford Inst Biomed Engn Dept Engn Sci Oxford OX1 3PJ England Univ Oxford Kennedy Inst Rheumatol Nuffield Dept Orthopaed Rheumatol & Musculoskeleta Oxford OX3 7FY England Univ Nottingham Sir Peter Mansfield Imaging Ctr Sch Med Nottingham NG7 2RD England Univ Nottingham Sch Med Mental Hlth & Clin Neurosci Nottingham NG7 2RD England Univ Oxford Wellcome Ctr Integrat Neuroimaging Nuffield Dept Clin Neurosci FMRIB Oxford OX3 9DU England
In this paper, a Variational Autoencoder (VAE) based framework is introduced to solve parameter estimation problems for non-linear forward models. In particular, we focus on applications in the field of medical imagin... 详细信息
来源: 评论
SUPERVISED image SEGMENTATION FOR HIGH DYNAMIC RANGE IMAGING
SUPERVISED IMAGE SEGMENTATION FOR HIGH DYNAMIC RANGE IMAGING
收藏 引用
IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Omrani, Ali Reza Moroni, Davide Natl Res Council Italy Inst Informat Sci & Technol ISTI Pisa Italy Univ Campus Biomed Roma Dept Engn Rome Italy
Regular cameras and cell phones are able to capture limited luminosity. In terms of quality, most of the produced images by such devices are not similar to the real world. Various methods, which fall under the name of... 详细信息
来源: 评论
DCT2net: An Interpretable Shallow CNN for image Denoising
收藏 引用
IEEE TRANSACTIONS ON image processing 2022年 31卷 4292-4305页
作者: Herbreteau, Sebastien Kervrann, Charles Inria Rennes Bretagne Atlantique F-35042 Rennes France PSL Res Univ UMR144 Insitut Curie CNRS F-75005 Paris France
This work tackles the issue of noise removal from images, focusing on the well-known DCT image denoising algorithm. The latter, stemming from signal processing, has been well studied over the years. Though very simple... 详细信息
来源: 评论
Radar signal processing and Its Impact on Deep Learning-Driven Human Activity Recognition
收藏 引用
SENSORS 2025年 第3期25卷 724-724页
作者: Ayaz, Fahad Alhumaily, Basim Hussain, Sajjad Imran, Muhammad Ali Arshad, Kamran Assaleh, Khaled Zoha, Ahmed Univ Glasgow James Watt Sch Engn Glasgow City G12 8QQ England Ajman Univ Coll Engn & Informat Technol Dept Elect & Comp Engn POB 346 Ajman U Arab Emirates Ajman Univ Artificial Intelligence Res Ctr POB 346 Ajman 346 U Arab Emirates
Human activity recognition (HAR) using radar technology is becoming increasingly valuable for applications in areas such as smart security systems, healthcare monitoring, and interactive computing. This study investig... 详细信息
来源: 评论
Dense Depth-Guided Generalizable NeRF
收藏 引用
IEEE signal processing LETTERS 2023年 30卷 75-79页
作者: Lee, Dongwoo Lee, Kyoung Mu Seoul Natl Univ Dept Elect Engn & Comp Sci ASRI Seoul South Korea Seoul Natl Univ Dept Elect Engn & Comp Sci ASRI Seoul South Korea
neural rendering approaches enable photo-realistic rendering on novel view synthesis tasks while their per-scene optimization remains an issue for scalability. Recent methods introduce novel neural radiance field (NeR... 详细信息
来源: 评论
Channel Pyramidal Transformer Network for Single image Deraining
收藏 引用
IEEE signal processing LETTERS 2023年 30卷 1757-1761页
作者: Xu, Yifei Long, Zourong Tang, Bin Lei, Siyue Chongqing Univ Technol Chongqing 400054 Peoples R China
In recent years, Convolutional neural Networks (CNNs) and Visual Transformers have shown remarkable performance in image deraining tasks. However, these state-of-the-art (SOTA) methods exhibit high computational costs... 详细信息
来源: 评论
Test Automation for Symbol Recognition on the Map  31
Test Automation for Symbol Recognition on the Map
收藏 引用
31st IEEE Conference on signal processing and Communications Applications (SIU)
作者: Turhan, Fatmanur Carkacioglu, Levent Toreyin, Behcet Ugur Aselsan AS Ankara Turkiye Istanbul Tech Univ Bilisim Enstitusu Istanbul Turkiye
In this study, various machine learning and image analysis approaches such as Template Matching, HOG, SVM, Faster RCNN and YOLO are examined and compared for the symbol recognition problem in color maps. Some difficul... 详细信息
来源: 评论
Speech emotion recognition based on multimodal and multiscale feature fusion
收藏 引用
signal image AND VIDEO processing 2025年 第1期19卷 1-9页
作者: Hu, Huangshui Wei, Jie Sun, Hongyu Wang, Chuhang Tao, Shuo Changchun Univ Technol Coll Comp Sci & Engn Changchun Peoples R China Changchun Normal Univ Coll Comp Sci & Technol Changchun Peoples R China
Conventional feature extraction methods for speech emotion recognition often suffer from unidimensionality and inadequacy in capturing the full range of emotional cues, limiting their effectiveness. To address these c... 详细信息
来源: 评论
Enhanced synthetic aperture radar image autofocus and classification using 2D SARNet framework
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2024年 第2期18卷
作者: Sakr, Mohamed Saleh, Ahmed AbdElkader, Fathy Amer, Ghada AboElenean, Mohamed Mil Tech Coll Elect Engn Cairo Egypt October 6 Univ Fac Informat & Comp Sci Giza Egypt MUST Univ Fac Engn Dept Elect Engn Giza Egypt
A synthetic aperture radar (SAR) system is a notable source of information, recognized for its capability to operate day and night and in all weather conditions, making it essential for various applications. SAR image... 详细信息
来源: 评论