咨询与建议

限定检索结果

文献类型

  • 5,806 篇 会议
  • 3,344 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,353 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,680 篇 工学
    • 3,394 篇 电气工程
    • 3,194 篇 计算机科学与技术...
    • 1,620 篇 软件工程
    • 1,430 篇 信息与通信工程
    • 847 篇 电子科学与技术(可...
    • 798 篇 生物医学工程(可授...
    • 552 篇 控制科学与工程
    • 530 篇 生物工程
    • 500 篇 光学工程
    • 329 篇 仪器科学与技术
    • 310 篇 机械工程
    • 161 篇 测绘科学与技术
    • 105 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,328 篇 理学
    • 1,230 篇 物理学
    • 716 篇 数学
    • 617 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 178 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,156 篇 医学
    • 1,697 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 166 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 75 篇 医学技术(可授医学...
  • 470 篇 管理学
    • 289 篇 管理科学与工程(可...
    • 190 篇 图书情报与档案管...
  • 60 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 15 篇 经济学
  • 15 篇 教育学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,007 篇 neural networks
  • 1,005 篇 deep learning
  • 723 篇 convolutional ne...
  • 612 篇 feature extracti...
  • 573 篇 signal processin...
  • 475 篇 convolutional ne...
  • 427 篇 image segmentati...
  • 427 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 251 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 189 篇 machine learning
  • 179 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 deep neural netw...
  • 164 篇 computational mo...
  • 155 篇 image classifica...
  • 146 篇 image coding
  • 138 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 university of el...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,747 篇 英文
  • 259 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9353 条 记 录,以下是4841-4850 订阅
排序:
image Based Tumor Cells Identification Using Convolutional neural Network and Auto Encoders
收藏 引用
TRAITEMENT DU signal 2019年 第5期36卷 445-453页
作者: Wajeed, Mohammed Abdul Sreenivasulu, Vallamchetty Keshav Mem Inst Technol Dept Comp Sci & Engn Hyderabad 500029 India
The convolutional neural network (CNN) and other neural networks (NNs) provide promising tools for robotized characterization of tumor cells. However, the tumor growth areas in ultrasound images are normally obscure, ... 详细信息
来源: 评论
Enhancing meibography based assessment of gland morphology by utilizing an image-rotating Mask R-CNN approach
收藏 引用
Biomedical signal processing and Control 2025年 109卷
作者: Paściak, Agnieszka Piwowarczyk, Patrycja K. Iskander, D. Robert Szczęsna-Iskander, Dorota H. Department of Optics and Photonics Wroclaw University of Science and Technology Wybrzeze Wyspianskiego 27 Wroclaw50-370 Poland Department of Biomedical Engineering Wroclaw University of Science and Technology Wybrzeze Wyspianskiego 27 Wroclaw50-370 Poland
Accurate analysis of meibomian gland morphology based on meibography images is of great importance for the diagnosis of dry eye disease. However, it is still a difficult task due to the time-consuming and variability ... 详细信息
来源: 评论
Saliency-Driven Versatile Video Coding for neural Object Detection
Saliency-Driven Versatile Video Coding for Neural Object Det...
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Kristian Fischer Felix Fleckenstein Christian Herglotz Andre Kaup Multimedia Communications and Signal Processing Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen Germany
Saliency-driven image and video coding for humans has gained importance in the recent past. In this paper, we pro-pose such a saliency-driven coding framework for the video coding for machines task using the latest vi... 详细信息
来源: 评论
Underwater objects classification method in high-resolution sonar images using deep neural network
收藏 引用
Chinese Journal of Acoustics 2020年 第4期39卷 454-467页
作者: ZHU Keqing TIAN Jie HUANG Haining Institute of Acoustics Chinese Acaderny of SciencesBeijing 100190 Key Laborutory of Science and Technology on Adoanced Underuater Acoustic Signal Processing Chinese Academg of SciencesBeijing 100190 University of Chinese Academg of Sciences Beijing 100049
To solve the problem of underwater proud object classification using high-resolution sonar image under small sample situation,a classification method using deep neural network is ***,statistical characteristics of aco... 详细信息
来源: 评论
SSGD: Sparsity-Promoting stochastic Gradient Descent Algorithm for Unbiased Dnn Pruning
SSGD: Sparsity-Promoting Stochastic Gradient Descent Algorit...
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Ching-Hua Lee Igor Fedorov Bhaskar D. Rao Harinath Garudadri Department of ECE University of California San Diego ARM ML Research
While deep neural networks (DNNs) have achieved state-of-the-art results in many fields, they are typically over-parameterized. Parameter redundancy, in turn, leads to inefficiency. Sparse signal recovery (SSR) techni... 详细信息
来源: 评论
2nd International Conference on Machine Learning, image processing, Network Security and Data Sciences, MIND 2020
2nd International Conference on Machine Learning, Image Proc...
收藏 引用
2nd International Conference on Machine Learning, image processing, Network Security and Data Sciences, MIND 2020
The proceedings contain 83 papers. The special focus in this conference is on Machine Learning, image processing, Network Security and Data Sciences. The topics include: An Empirical Study to Predict Myocardial Infarc...
来源: 评论
Convolutional neural network denoising in Fluorescence Lifetime Imaging Microscopy (FLIM)  21
Convolutional neural network denoising in Fluorescence Lifet...
收藏 引用
Multiphoton Microscopy in the Biomedical Sciences XXI 2021
作者: Mannam, Varun Zhang, Yide Yuan, Xiaotong Hato, Takashi Dagher, Pierre C. Nichols, Evan L. Smith, Cody J. Dunn, Kenneth W. Howard, Scott Department of Electrical Engineering University of Notre Dame Notre DameIN46556 United States Caltech Optical Imaging Laboratory Andrew and Peggy Cherng Department of Medical Engineering California Institute of Technology PasadenaCA91125 United States Department of Medicine Division of Nephrology Indiana University IndianapolisIN46202 United States Department of Biological Sciences University of Notre Dame Notre DameIN46556 United States
Fluorescence lifetime imaging microscopy (FLIM) systems are limited by their slow processing speed, low signalto- noise ratio (SNR), and expensive and challenging hardware setups. In this work, we demonstrate applying... 详细信息
来源: 评论
Multi-Modal Reflection Removal Using Convolutional neural Networks
收藏 引用
IEEE signal processing LETTERS 2019年 第7期26卷 1011-1015页
作者: Sun, Jun Chang, Yakun Jung, Cheolkon Feng, Jiawei Xidian Univ Sch Elect Engn Xian 710071 Shaanxi Peoples R China
Although color images are easily interfered by glass, depth images captured by infrared sensors are robust to reflection. In this letter, we propose multi-modal reflection removal using convolutional neural networks (... 详细信息
来源: 评论
面向嵌入式系统的图像实时去雾方法
收藏 引用
激光杂志 2023年 第9期44卷 80-84页
作者: 杨亚伟 周刚 林猛 石军 贾振红 新疆大学信息科学与工程学院信号检测与处理重点实验室 乌鲁木齐830046
近些年来,深度学习方法快速兴起,卷积神经网络技术被应用于图像去雾领域,去雾效果得到了进一步提升。但也面临着计算量大,无法在嵌入式设备中达到实时性的问题。为增强嵌入式设备的去雾效率,通过优化网络结构和剪枝算法压缩网络模型,设... 详细信息
来源: 评论
Low Power Approximate Hardware Design For Multimedia and neural Network Applications
Low Power Approximate Hardware Design For Multimedia and Neu...
收藏 引用
作者: Sharmin Snigdha, Farhana University of Minnesota
学位级别:博士
In today's data- and computation-driven society, day-to-day life depends on devices such as smartphones, laptops, smart watches, and biosensors/image sensors connected to computational engines. The computationall... 详细信息
来源: 评论