咨询与建议

限定检索结果

文献类型

  • 5,806 篇 会议
  • 3,344 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,353 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,680 篇 工学
    • 3,394 篇 电气工程
    • 3,194 篇 计算机科学与技术...
    • 1,620 篇 软件工程
    • 1,430 篇 信息与通信工程
    • 847 篇 电子科学与技术(可...
    • 798 篇 生物医学工程(可授...
    • 552 篇 控制科学与工程
    • 530 篇 生物工程
    • 500 篇 光学工程
    • 329 篇 仪器科学与技术
    • 310 篇 机械工程
    • 161 篇 测绘科学与技术
    • 105 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,328 篇 理学
    • 1,230 篇 物理学
    • 716 篇 数学
    • 617 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 178 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,156 篇 医学
    • 1,697 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 166 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 75 篇 医学技术(可授医学...
  • 470 篇 管理学
    • 289 篇 管理科学与工程(可...
    • 190 篇 图书情报与档案管...
  • 60 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 15 篇 经济学
  • 15 篇 教育学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,007 篇 neural networks
  • 1,005 篇 deep learning
  • 723 篇 convolutional ne...
  • 612 篇 feature extracti...
  • 573 篇 signal processin...
  • 475 篇 convolutional ne...
  • 427 篇 image segmentati...
  • 427 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 251 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 189 篇 machine learning
  • 179 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 deep neural netw...
  • 164 篇 computational mo...
  • 155 篇 image classifica...
  • 146 篇 image coding
  • 138 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 university of el...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,747 篇 英文
  • 259 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9353 条 记 录,以下是4891-4900 订阅
排序:
image DENOISING WITH GRAPH-CONVOLUTIONAL neural NETWORKS  26
IMAGE DENOISING WITH GRAPH-CONVOLUTIONAL NEURAL NETWORKS
收藏 引用
26th IEEE International Conference on image processing (ICIP)
作者: Valsesia, Diego Fracastoro, Giulia Magli, Enrico Politecn Torino Dept Elect & Telecommun Turin Italy
Recovering an image from a noisy observation is a key problem in signal processing. Recently, it has been shown that data-driven approaches employing convolutional neural networks can outperform classical model-based ... 详细信息
来源: 评论
Efficient transformation of ECG signals from 1-D to 2-D for atrial fibrillation detection using deep learning
收藏 引用
signal, image and Video processing 2025年 第9期19卷
作者: Gao, Jiahui Li, Yongjian Chen, Meng Zhang, Xiuxin Sun, Yiheng Jiang, Xinge Wei, Shoushui School of Control Science and Engineering Shandong University Jinan China School of Information Science and Electrical Engineering Shandong Jiaotong University Jinan China
With the widespread use of wearable electrocardiographic (ECG) devices, there’s a growing need for efficient processing of large-scale real-time data to detect cardiovascular diseases. Deep learning, known for its ac... 详细信息
来源: 评论
GW-DC: A Deep Clustering Model Leveraging Two-Dimensional image Transformation and Enhancement
收藏 引用
ALGORITHMS 2021年 第12期14卷 349页
作者: Li, Xutong Li, Taoying Wang, Yan Dalian Maritime Univ Sch Maritime Econ & Management Dalian 116026 Peoples R China
Traditional time-series clustering methods usually perform poorly on high-dimensional data. However, image clustering using deep learning methods can complete image annotation and searches in large image databases wel... 详细信息
来源: 评论
A Deep Learning-Based Pipeline for Multi-Class Motor imagery Problems with Small Portion of Labeled Datasets
A Deep Learning-Based Pipeline for Multi-Class Motor Imagery...
收藏 引用
Iranian Conference of Biomedical Engineering (ICBME)
作者: Neda Abdollahpour Mohammadreza Yazdchi Zahra Baharlouei Department of Biomedical Engineering Ragheb Isfahani Institute of Higher Education Isfahan Iran Medical Image and Signal Processing Research Center School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
In this article, a new framework is proposed to address multi-class Motor imagery Brain-Computer Interface (MIBCI) problems containing a small portion of labeled datasets. In this framework, the combination of Indepen... 详细信息
来源: 评论
VARIATIONAL AND HIERARCHICAL RECURRENT AUTOENCODER  44
VARIATIONAL AND HIERARCHICAL RECURRENT AUTOENCODER
收藏 引用
44th IEEE International Conference on Acoustics, Speech and signal processing (ICASSP)
作者: Chien, Jen-Tzung Wang, Chun-Wei Natl Chiao Tung Univ Dept Elect & Comp Engn Hsinchu Taiwan
Despite a great success in learning representation for image data, it is challenging to learn the stochastic latent features from natural language based on variational inference. The difficulty in stochastic sequentia... 详细信息
来源: 评论
Full RGB Just Noticeable Difference (JND) Modelling
arXiv
收藏 引用
arXiv 2022年
作者: Jin, Jian Yu, Dong Lin, Weisi Meng, Lili Wang, Hao Zhang, Huaxiang The School of Computer Science and Engineering Nanyang Technological University 639798 Singapore AlibabaNTU Singapore Joint Research Institute Nanyang Technological University 639798 Singapore The School of Information Science and Engineering Shandong Normal University Jinan250014 China The Alibaba cloud business group Alibaba Hangzhou310052 China
Just Noticeable Difference (JND) has many applica-tions in multimedia signal processing, especially for visual data processing up to date. It's generally defined as the minimum visual content changes that the huma... 详细信息
来源: 评论
Multimodal Graph Coarsening for Interpretable, MRI-Based Brain Graph neural Network
Multimodal Graph Coarsening for Interpretable, MRI-Based Bra...
收藏 引用
IEEE Workshop on Machine Learning for signal processing
作者: Isaac Sebenius Alexander Campbell Sarah E. Morgan Edward T. Bullmore Pietro Liò Department of Computer Science and Technology University of Cambridge United Kingdom Departmcnt of Psychiatry University of Cambridge United Kingdom Alan Turing Institute London United Kingdom
Graph neural networks (GNN s) are a powerful class of model for representation learning on relational data and graph-structured signal, such as brain connectivity graphs derived from neuroimaging. To date, existing wo... 详细信息
来源: 评论
Blur image identification with ensemble convolution neural networks
收藏 引用
signal processing 2019年 155卷 73-82页
作者: Wang, Rui Li, Wei Zhang, Liang Beihang Univ Sch Instrumentat Sci & Optoelect Engn Key Lab Precis Optomechatron Technol Minist Educ 37 Xueyuan Rd Beijing 100191 Haidian Peoples R China Univ Connecticut Dept Elect & Comp Engn 371 Fairfield WayU-4157 Storrs CT 06269 USA
Blur image classification is a key step to image recovery in image processing. In this article, an ensemble convolution neural network (CNN) is designed to identify and classify four types of blur images: defocus blur... 详细信息
来源: 评论
Metaphase finding with deep convolutional neural networks
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2019年 第0期52卷 353-361页
作者: Moazzen, Yaser Capar, Abdulkerim Albayrak, Abdulkadir Calik, Nurullah Toreyin, Behcet Ugur Istanbul Tech Univ Informat Inst Ayazaga Campus Istanbul Turkey Yildiz Tech Univ Fac Elect & Elect Engn Davutpasa Campus Istanbul Turkey Dicle Univ Dept Comp Engn Diyarbakir Turkey
Background: Finding analyzable metaphase chromosome images is an essential step in karyotyping which is a common task for clinicians to diagnose cancers and genetic disorders precisely. This step is tedious and time-c... 详细信息
来源: 评论
Tensor rank learning in CP decomposition via convolutional neural network
收藏 引用
signal processing-image COMMUNICATION 2019年 73卷 12-21页
作者: Zhou, Mingyi Liu, Yipeng Long, Zhen Chen, Longxi Zhu, Ce Univ Elect Sci & Technol China Ctr Informat Med Ctr Robot Sch Informat & Commun Engn Xiyuan Ave 2006 Chengdu Sichuan Peoples R China
Tensor factorization is a useful technique for capturing the high-order interactions in data analysis. One assumption of tensor decompositions is that a predefined rank should be known in advance. However, the tensor ... 详细信息
来源: 评论