咨询与建议

限定检索结果

文献类型

  • 5,806 篇 会议
  • 3,344 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,353 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,680 篇 工学
    • 3,394 篇 电气工程
    • 3,194 篇 计算机科学与技术...
    • 1,620 篇 软件工程
    • 1,430 篇 信息与通信工程
    • 847 篇 电子科学与技术(可...
    • 798 篇 生物医学工程(可授...
    • 552 篇 控制科学与工程
    • 530 篇 生物工程
    • 500 篇 光学工程
    • 329 篇 仪器科学与技术
    • 310 篇 机械工程
    • 161 篇 测绘科学与技术
    • 105 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,328 篇 理学
    • 1,230 篇 物理学
    • 716 篇 数学
    • 617 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 178 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,156 篇 医学
    • 1,697 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 166 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 75 篇 医学技术(可授医学...
  • 470 篇 管理学
    • 289 篇 管理科学与工程(可...
    • 190 篇 图书情报与档案管...
  • 60 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 15 篇 经济学
  • 15 篇 教育学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,007 篇 neural networks
  • 1,005 篇 deep learning
  • 723 篇 convolutional ne...
  • 612 篇 feature extracti...
  • 573 篇 signal processin...
  • 475 篇 convolutional ne...
  • 427 篇 image segmentati...
  • 427 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 251 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 189 篇 machine learning
  • 179 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 deep neural netw...
  • 164 篇 computational mo...
  • 155 篇 image classifica...
  • 146 篇 image coding
  • 138 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 university of el...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,747 篇 英文
  • 259 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9353 条 记 录,以下是4931-4940 订阅
排序:
RECURRENT neural NETWORK LANGUAGE MODEL TRAINING USING NATURAL GRADIENT  44
RECURRENT NEURAL NETWORK LANGUAGE MODEL TRAINING USING NATUR...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and signal processing (ICASSP)
作者: Yu, Jianwei Lam, Max. W. Y. Chen, Xie Hu, Shoukang Liu, Songxiang Wu, Xixin Liu, Xunying Meng, Helen Chinese Univ Hong Kong Hong Kong Peoples R China Microsoft AI & Res One Microsoft Way Redmond WA USA
Recurrent neural network language models (RNNLMs) have become an increasing popular choice for state-of-the-art speech recognition systems. RNNLMs are normally trained by minimizing the cross entropy (CE) using the st... 详细信息
来源: 评论
Roman domination-based spiking neural network for optimized EEG signal classification of four class motor imagery
收藏 引用
Computers in Biology and Medicine 2025年 194卷
作者: Raja Sekhar Banovoth Kadambari K V Department of Computer Science and Engineering National Institute of Technology Warangal Telangana 506004 India
The Spiking neural Network (SNN) is a third-generation neural network recognized for its energy efficiency and ability to process spatiotemporal information, closely imitating the behavioral mechanisms of biological n... 详细信息
来源: 评论
image CORRECTION IN EMISSION TOMOGRAPHY USING DEEP CONVOLUTION neural NETWORK  44
IMAGE CORRECTION IN EMISSION TOMOGRAPHY USING DEEP CONVOLUTI...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and signal processing (ICASSP)
作者: Suzuki, Tomohiro Kudo, Hiroyuki Univ Tsukuba Grad Sch Syst & Informat Engn Dept Comp Sci Tennoudai 1-1-1 Tsukuba Ibaraki 3058573 Japan
We propose a new approach using Deep Convolution neural Network (DCNN) to correct for image degradations due to statistical noise and photon attenuation in Emission Tomography (ET). The proposed approach first reconst... 详细信息
来源: 评论
CONVOLUTIONAL neural NETWORKS FOR HETEROGENEOUS INGREDIENT DISCRIMINATION WITH HYPERSPECTRAL IMAGING  10
CONVOLUTIONAL NEURAL NETWORKS FOR HETEROGENEOUS INGREDIENT D...
收藏 引用
10th Workshop on Hyperspectral Imaging and signal processing: Evolution in Remote Sensing (WHISPERS)
作者: Blanch-Perez-del-Notario, Carolina Saeys, Wouter Lambrechts, Andy IMEC Kapeldreef 75 B-3001 Leuven Belgium Katholieke Univ Leuven Div Mechatron Biostat & Sensors B-3001 Leuven Belgium
Convolutional neural Networks (CNNs) are recently gaining popularity to perform a joint spatio-spectral analysis of hyperspectral images and have achieved good performance in remote sensing applications. We show the p... 详细信息
来源: 评论
KR product and sparse prior based CNN estimator for 2-D DOA estimation
收藏 引用
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS 2021年 137卷 153780-153780页
作者: Yuan, Ye Wu, Shuang Ma, Yuhong Huang, Lei Yuan, Naichang Natl Univ Def Technol State Key Lab Complex Electromagnet Environm Effe Deya Rd 109 Changsha 410073 Hunan Peoples R China Acad Mil Sci Natl Innovat Inst Def Technol Fengtai West Rd Beijing 100071 Peoples R China
This paper proposes a method based on Khatri-Rao (KR) product, sparse prior, and convolutional neural networks (CNN) to solve the direction-of-arrival (DOA) estimation problem. Firstly, we use the KR product to expand... 详细信息
来源: 评论
时频域重叠多信号智能检测方法研究
收藏 引用
信号处理 2021年 第5期37卷 878-884页
作者: 李杰 孙闽红 仇兆炀 杭州电子科技大学通信工程学院 浙江杭州310018
针对现有基于深度学习理论的信号智能检测方法大多只能对单信号或时频域不重叠的信号进行检测,本文提出了一种基于掩膜区域卷积神经网络(Mask R-CNN)与Criminisi算法的时频重叠多信号智能检测新方法。首先将一维时域信号通过时频变换得... 详细信息
来源: 评论
Data, signal and image processing and Applications in Sensors
收藏 引用
SENSORS 2021年 第10期21卷 3323-3323页
作者: Reis, Manuel J. C. S. Univ Tras Os Montes & Alto Douro UTAD IEETA Dept Engn P-5000801 Vila Real Portugal
In order to obtain relevant and insightful metrics from the sensors signals’ data, further enhancement of the acquired sensor signals, such as the noise reduction in the one-dimensional electroencephalographic (EEG) ...
来源: 评论
methods to enhance the automation of operational modal analysis  45
Methods to enhance the automation of operational modal analy...
收藏 引用
45th International Conference on Vibroengineering
作者: Wiemann, Marcel Bonekemper, Lukas Kraemer, Peter Department of Mechanical Engineering University of Siegen Siegen Germany
The vibration-based damage detection and the monitoring of modal data are currently based on different Operational Modal Analysis (OMA) approaches. For the continuous monitoring of modal quantities, different techniqu... 详细信息
来源: 评论
CONVOLUTIONAL neural NETWORKS CONSIDERING LOCAL AND GLOBAL FEATURES FOR image ENHANCEMENT  26
CONVOLUTIONAL NEURAL NETWORKS CONSIDERING LOCAL AND GLOBAL F...
收藏 引用
26th IEEE International Conference on image processing (ICIP)
作者: Kinoshita, Yuma Kiya, Hitoshi Tokyo Metropolitan Univ Tokyo Japan
In this paper, we propose a novel convolutional neural network (CNN) architecture considering both local and global features for image enhancement. Most conventional image enhancement methods, including Retinex-based ... 详细信息
来源: 评论
BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2023年 第6期20卷 824-835页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
来源: 评论