咨询与建议

限定检索结果

文献类型

  • 5,806 篇 会议
  • 3,344 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,353 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,680 篇 工学
    • 3,394 篇 电气工程
    • 3,194 篇 计算机科学与技术...
    • 1,620 篇 软件工程
    • 1,430 篇 信息与通信工程
    • 847 篇 电子科学与技术(可...
    • 798 篇 生物医学工程(可授...
    • 552 篇 控制科学与工程
    • 530 篇 生物工程
    • 500 篇 光学工程
    • 329 篇 仪器科学与技术
    • 310 篇 机械工程
    • 161 篇 测绘科学与技术
    • 105 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,328 篇 理学
    • 1,230 篇 物理学
    • 716 篇 数学
    • 617 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 178 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,156 篇 医学
    • 1,697 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 166 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 75 篇 医学技术(可授医学...
  • 470 篇 管理学
    • 289 篇 管理科学与工程(可...
    • 190 篇 图书情报与档案管...
  • 60 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 15 篇 经济学
  • 15 篇 教育学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,007 篇 neural networks
  • 1,005 篇 deep learning
  • 723 篇 convolutional ne...
  • 612 篇 feature extracti...
  • 573 篇 signal processin...
  • 475 篇 convolutional ne...
  • 427 篇 image segmentati...
  • 427 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 251 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 189 篇 machine learning
  • 179 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 deep neural netw...
  • 164 篇 computational mo...
  • 155 篇 image classifica...
  • 146 篇 image coding
  • 138 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 university of el...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,747 篇 英文
  • 259 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9353 条 记 录,以下是4951-4960 订阅
排序:
Protecting the Intellectual Property of Deep neural Networks with Watermarking: The Frequency Domain Approach  19
Protecting the Intellectual Property of Deep Neural Networks...
收藏 引用
19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom)
作者: Li, Meng Zhong, Qi Zhang, Leo Yu Du, Yajuan Zhang, Jun Xiang, Yong Wuhan Univ Technol Wuhan Peoples R China Deakin Univ Geelong Vic Australia Swinburne Univ Technol Melbourne Vic Australia
Similar to other digital assets, deep neural network (DNN) models could suffer from piracy threat initiated by insider and/or outsider adversaries due to their inherent commercial value. DNN watermarking is a promisin... 详细信息
来源: 评论
MULTI-SCALE DILATED RESIDUAL CONVOLUTIONAL neural NETWORK FOR HYPERSPECTRAL image CLASSIFICATION  10
MULTI-SCALE DILATED RESIDUAL CONVOLUTIONAL NEURAL NETWORK FO...
收藏 引用
10th Workshop on Hyperspectral Imaging and signal processing: Evolution in Remote Sensing (WHISPERS)
作者: Pooja, Kumari Nidamanuri, Rama Rao Mishra, Deepak Indian Inst Space Sci & Technol Dept Avion Thiruvananthapuram 695547 Kerala India Indian Inst Space Sci & Technol Dept Earth & Space Sci Thiruvananthapuram 695547 Kerala India
Recently, deep Convolutional neural Networks (CNNs) have been extensively studied for hyperspectral image classification. It has undergone significant improvement as compared to conventional classification methods. Ye... 详细信息
来源: 评论
Improvement of edge-tracking methods using Genetic algorithm and neural network  5
Improvement of edge-tracking methods using Genetic algorithm...
收藏 引用
5th Iranian Conference on signal processing and Intelligent Systems (ICSPIS)
作者: Shabankareh, Sajjad Ghazanfari Shabankareh, Saeid Ghazanfari Islamic Azad Univ Fac Elect Engn Shiraz Iran Aix Marseille Univ Fac Sci & Technol Marseille France
One of the most basic and important operations in the field of image processing is image extraction and detection. Edge recognition is very important for image clarity and image segmentation. The importance of edge de... 详细信息
来源: 评论
Classification of brain activities during language and music perception
收藏 引用
signal image AND VIDEO processing 2019年 第8期13卷 1559-1567页
作者: Besedova, Petra Vysata, Oldrich Mazurova, Radka Kopal, Jakub Ondrakova, Jana Valis, Martin Prochazka, Ales Univ Hradec Kralove Dept German Language & Literature Fac Educ Hradec Kralove 50003 Czech Republic Charles Univ Prague Dept Neurol Fac Med Hradec Kralove Hradec Kralove 50005 Czech Republic Univ Chem & Technol Prague Dept Comp & Control Engn Prague 16628 6 Czech Republic Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague 16636 6 Czech Republic
Analysis of brain activities in language perception for individuals with different musical backgrounds can be based upon the study of multichannel electroencephalograhy (EEG) signals acquired in different external con... 详细信息
来源: 评论
Deep learning-based embedded license plate localisation system
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2019年 第10期13卷 1569-1578页
作者: Yepez, Juan Castro-Zunti, Riel D. Ko, Seok-Bum Univ Saskatchewan Dept Elect & Comp Engn Saskatoon SK Canada
In this study the authors propose novel neural network architecture for license plate localisation (LPL) based on an inverted residual structure where the shortcut connections are between the linear bottleneck layers.... 详细信息
来源: 评论
Human Action Recognition using Pre-trained Convolutional neural Networks  20
Human Action Recognition using Pre-trained Convolutional Neu...
收藏 引用
2020 2nd International Conference on Video, signal and image processing
作者: Cherry Aly Fazly Salleh Abas Hock Ann Goh Multimedia University Malaysia
Recognition of human action is one of the challenges in the field of artificial intelligence. Deep learning model has become a research issue in action recognition applications due to its ability to outperform traditi... 详细信息
来源: 评论
Distribution mismatch correction for improved robustness in deep neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Fuchs, Alexander Knoll, Christian Pernkopf, Franz Signal Processing and Speech Communication Laboratory Graz University of Technology
Deep neural networks rely heavily on normalization methods to improve their performance and learning behavior. Although normalization methods spurred the development of increasingly deep and efficient architectures, t... 详细信息
来源: 评论
Label-free optical hemogram of granulocytes enhanced by artificial neural networks
收藏 引用
OPTICS EXPRESS 2019年 第10期27卷 13706-13720页
作者: Gupta, Roopam K. Chen, Mingzhou Malcolm, Graeme P. A. Hempler, Nils Dholakia, Kishan Powis, Simon J. Univ St Andrews Sch Med Biomed Sci Res Complex St Andrews KY16 9TF Fife Scotland Univ St Andrews Sch Phys & Astron SUPA St Andrews KY16 9SS Fife Scotland M Squared Lasers 1 Kelvin CampusWest Scotland Sci Pk Glasgow G20 0SP Lanark Scotland
An outstanding challenge for immunology is the classification of immune cells in a label-free fashion with high speed. For this purpose, optical techniques such as Raman spectroscopy or digital holographic microscopy ... 详细信息
来源: 评论
Wide context learning network for stereo matching
收藏 引用
signal processing-image COMMUNICATION 2019年 78卷 263-273页
作者: Tien Phuoc Nguyen Jeon, Jae Wook Sungkyunkwan Univ Dept Elect & Comp Engn Suwon South Korea
Binocular stereo matching is a challenging problem in computer vision. Recently, convolutional neural networks (CNNs) have emerged as a promising approach. However, matching ambiguities on ill-posed regions remain an ... 详细信息
来源: 评论
Marathon Bib Number Recognition using Deep Learning  11
Marathon Bib Number Recognition using Deep Learning
收藏 引用
11th International Symposium on image and signal processing and Analysis (ISPA)
作者: Apap, Adrian Seychell, Dylan Univ Malta Dept Artificial Intelligence Msida Malta
Bib number recognition (BNR) from unstructured marathon images can be a challenging task. This is because the images captured at these events are very inconsistent since, they are often captured by multiple photograph... 详细信息
来源: 评论