咨询与建议

限定检索结果

文献类型

  • 5,804 篇 会议
  • 3,341 篇 期刊文献
  • 103 册 图书
  • 92 篇 学位论文
  • 3 篇 科技报告
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,347 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,675 篇 工学
    • 3,396 篇 电气工程
    • 3,198 篇 计算机科学与技术...
    • 1,627 篇 软件工程
    • 1,426 篇 信息与通信工程
    • 845 篇 电子科学与技术(可...
    • 788 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 514 篇 光学工程
    • 507 篇 生物工程
    • 327 篇 仪器科学与技术
    • 312 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 49 篇 航空宇航科学与技...
  • 2,300 篇 理学
    • 1,206 篇 物理学
    • 714 篇 数学
    • 616 篇 生物学
    • 286 篇 系统科学
    • 255 篇 统计学(可授理学、...
    • 153 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,133 篇 医学
    • 1,674 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 143 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 466 篇 管理学
    • 286 篇 管理科学与工程(可...
    • 189 篇 图书情报与档案管...
  • 61 篇 农学
  • 33 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 15 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,006 篇 neural networks
  • 1,001 篇 deep learning
  • 733 篇 convolutional ne...
  • 613 篇 feature extracti...
  • 573 篇 signal processin...
  • 474 篇 convolutional ne...
  • 433 篇 image segmentati...
  • 426 篇 image processing
  • 376 篇 training
  • 277 篇 convolution
  • 247 篇 image reconstruc...
  • 238 篇 stochastic proce...
  • 187 篇 machine learning
  • 178 篇 image restoratio...
  • 172 篇 signal processin...
  • 167 篇 computational mo...
  • 166 篇 deep neural netw...
  • 155 篇 image classifica...
  • 147 篇 image coding
  • 137 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,772 篇 英文
  • 257 篇 中文
  • 228 篇 其他
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9347 条 记 录,以下是531-540 订阅
排序:
Contact classification for human-robot interaction with densely connected convolutional neural network and convolutional block attention module
收藏 引用
signal image AND VIDEO processing 2024年 第5期18卷 4363-4374页
作者: Aydin, Ahmet Avaroglu, Erdinc Gaziantep Islam Sci & Technol Univ Vocat Sch Tech Sci TR-27070 Gaziantep Turkiye Mersin Univ Dept Comp Engn TR-33100 Mersin Turkiye
Human-robot interaction (HRI) is a challenging topic to perform various tasks in many repetitive and dangerous tasks. However, humans not only share a workspace with robots, they also use them as helpful assistants. I... 详细信息
来源: 评论
Spatial Adaptive Filter Network With Scale-Sharing Convolution for image Demoireing
收藏 引用
IEEE signal processing LETTERS 2024年 31卷 2495-2499页
作者: Xu, Yong Wei, Zhiyu Xu, Ruotao Zhou, Zihan Yu, Zhuliang South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Guangdong Prov Key Lab Multimodal Big Data Intelli Guangzhou 519085 Peoples R China PaZhou Lab Guangzhou Guangzhou 510335 Peoples R China Inst Super Robot Huangpu Guangzhou 510555 Peoples R China South China Agr Univ Sch Coll Math & Informat Guangzhou Peoples R China South China Univ Technol Shien Ming Wu Sch Intelligent Engn Guangzhou 511442 Peoples R China South China Univ Technol Sch Automat Sci & Engn Guangzhou 510641 Peoples R China
Removing moire patterns is a challenging task as it is a spatially varying degradation that varies in shape, color and scale. Existing image restoration models often rely on static convolutional neural networks (CNNs)... 详细信息
来源: 评论
NL-CS Net: Deep Learning with Non-local Prior for image Compressive Sensing
收藏 引用
CIRCUITS SYSTEMS AND signal processing 2024年 第8期43卷 5191-5210页
作者: Bian, Shuai Qi, Shouliang Li, Chen Yao, Yudong Teng, Yueyang Northeastern Univ Coll Med & Biol Informat Engn Shenyang 110169 Peoples R China Stevens Inst Technol Dept Elect & Comp Engn Hoboken NJ 07030 USA Minist Educ Key Lab Intelligent Comp Med Shenyang 110169 Peoples R China
Deep learning has been applied to compressive sensing (CS) of images successfully in recent years. However, existing network-based methods are often trained as the black box, in which the lack of prior knowledge is of... 详细信息
来源: 评论
A synergistic CNN-transformer network with pooling attention fusion for hyperspectral image classification
收藏 引用
DIGITAL signal processing 2025年 160卷
作者: Chen, Peng He, Wenxuan Qian, Feng Shi, Guangyao Yan, Jingwen Shantou Univ Coll Engn Shantou 515063 Guangdong Peoples R China Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430074 Hubei Peoples R China Chinese Acad Sci Changchun Inst Opt & Fine Mech & Phys Changchun 130033 Jilin Peoples R China Chongqing Univ Posts & Telecommun Sch Comp Sci & Technol Chongqing 400065 Peoples R China Guangzhou Inst Sci & Technol Sch Intelligent Mfg & Elect Engn Guangzhou 510000 Guangdong Peoples R China
In the hyperspectral image (HSI) classification task, each pixel is categorized into a specific land-cover category or material. Convolutional neural networks (CNNs) and transformers have been widely used to extract l... 详细信息
来源: 评论
TA2P: TASK-AWARE ADAPTIVE PRUNING METHOD FOR image CLASSIFICATION ON EDGE DEVICES  49
TA2P: TASK-AWARE ADAPTIVE PRUNING METHOD FOR IMAGE CLASSIFIC...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Wang, Yanting Li, Feng Zhang, Han Northwestern Polytech Univ Sch Software Xian Peoples R China Northwestern Polytech Univ Shenzhen Res & Dev Inst Shenzhen Peoples R China China Unicom Res Inst Beijing Peoples R China
Convolutional neural networks (CNNs) have been extensively used in image classification. However, it is still challenging to directly deploy them on edge devices because of high computation requirements. To solve this... 详细信息
来源: 评论
Advocating Pixel-Level Authentication of Camera-Captured images
收藏 引用
IEEE ACCESS 2024年 12卷 45839-45846页
作者: Punnappurath, Abhijith Zhao, Luxi Abdelhamed, Abdelrahman Brown, Michael S. Samsung AI Ctr Toronto Toronto ON M5G 1L7 Canada Google Res Toronto ON M5H 2G4 Canada
The authenticity of digital images posted online and shared on social media is often questioned due to the ability of photo-editing software to alter image content and generative AI methods that can produce visually c... 详细信息
来源: 评论
SA-BiSeNet: Swap attention bilateral segmentation network for real-time inland waterways segmentation
收藏 引用
IET image processing 2023年 第1期17卷 166-177页
作者: Zhang, W. B. Wu, C. Y. Bao, Z. S. Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China
The technology for autonomous navigation on inland waterways is worth investigating, and navigable water surface segmentation is a key part of this technology. Semantic segmentation methods based on deep learning are ... 详细信息
来源: 评论
A comparative analysis of image harmonization techniques in mitigating differences in CT acquisition and reconstruction
收藏 引用
PHYSICS IN MEDICINE AND BIOLOGY 2025年 第5期70卷 055015-055015页
作者: Yadav, Anil Welland, Spencer Hoffman, John M. Kim, Grace Brown, Matthew S. Prosper, Ashley E. Aberle, Denise R. McNitt-Gray, Michael F. Hsu, William Univ Calif Los Angeles Samueli Sch Engn Dept Bioengn Los Angeles CA 90095 USA UCLA Dept Radiol Sci Med & Imaging Informat Grp David Geffen Sch Med Los Angeles CA 90095 USA UCLA Ctr Comp Vis & Imaging Biomarkers Dept Radiol Sci David Geffen Sch Med Los Angeles CA 90095 USA
Objective. The study aims to systematically characterize the effect of CT parameter variations on images and lung radiomic and deep features, and to evaluate the ability of different image harmonization methods to mit... 详细信息
来源: 评论
Learning Deep Scene Curve for Fast and Robust Underwater image Enhancement
收藏 引用
IEEE signal processing LETTERS 2024年 31卷 6-10页
作者: Xue, Xinwei Ma, Tianjiao Han, Yidong Ma, Long Liu, Risheng Dalian Univ Technol Sch Software Technol Dalian 116024 Peoples R China
Learning-based approaches inspired by the scattering model for enhancing underwater imagery have gained prominence. Nevertheless, these methods often suffer from time-consuming attributable to their sizable model dime... 详细信息
来源: 评论
Learning Point Spread Function Invertibility Assessment for image Deconvolution  32
Learning Point Spread Function Invertibility Assessment for ...
收藏 引用
32nd European signal processing Conference (EUSIPCO)
作者: Gualdron-Hurtado, Romario Jacome, Roman Urrea, Sergio Arguello, Henry Gonzalez, Luis Univ Ind Santander Dept Comp Sci Bucaramanga Colombia Univ Ind Santander Dept Elect Engn Bucaramanga Colombia
Deep-learning (DL)-based image deconvolution (ID) has exhibited remarkable recovery performance, surpassing traditional linear methods. However, unlike traditional ID approaches that rely on analytical properties of t... 详细信息
来源: 评论