咨询与建议

限定检索结果

文献类型

  • 5,805 篇 会议
  • 3,385 篇 期刊文献
  • 102 册 图书
  • 76 篇 学位论文
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,373 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,753 篇 工学
    • 3,497 篇 电气工程
    • 3,209 篇 计算机科学与技术...
    • 1,608 篇 软件工程
    • 1,432 篇 信息与通信工程
    • 873 篇 电子科学与技术(可...
    • 785 篇 生物医学工程(可授...
    • 553 篇 控制科学与工程
    • 510 篇 光学工程
    • 498 篇 生物工程
    • 325 篇 仪器科学与技术
    • 314 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
    • 45 篇 交通运输工程
  • 2,270 篇 理学
    • 1,204 篇 物理学
    • 707 篇 数学
    • 596 篇 生物学
    • 286 篇 系统科学
    • 252 篇 统计学(可授理学、...
    • 150 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,130 篇 医学
    • 1,683 篇 临床医学
    • 249 篇 基础医学(可授医学...
    • 127 篇 特种医学
    • 98 篇 药学(可授医学、理...
  • 477 篇 管理学
    • 293 篇 管理科学与工程(可...
    • 194 篇 图书情报与档案管...
  • 48 篇 农学
  • 32 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 14 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学

主题

  • 1,008 篇 deep learning
  • 1,008 篇 neural networks
  • 744 篇 convolutional ne...
  • 635 篇 feature extracti...
  • 570 篇 signal processin...
  • 484 篇 convolutional ne...
  • 468 篇 image segmentati...
  • 394 篇 image processing
  • 376 篇 training
  • 271 篇 convolution
  • 248 篇 image reconstruc...
  • 235 篇 stochastic proce...
  • 185 篇 image restoratio...
  • 183 篇 computer vision ...
  • 175 篇 machine learning
  • 173 篇 signal processin...
  • 170 篇 deep neural netw...
  • 161 篇 computational mo...
  • 158 篇 optical, image a...
  • 156 篇 image classifica...

机构

  • 31 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 20 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 17 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 beijing inst tec...
  • 13 篇 university of el...
  • 13 篇 university of ch...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 school of electr...
  • 12 篇 shanghai jiao to...
  • 12 篇 zhejiang univ co...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 14 篇 gabbouj moncef
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 zhai guangtao
  • 11 篇 yang bin
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 wang wei
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon
  • 9 篇 li bo

语言

  • 8,638 篇 英文
  • 382 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9373 条 记 录,以下是651-660 订阅
排序:
Learning Point Spread Function Invertibility Assessment for image Deconvolution  32
Learning Point Spread Function Invertibility Assessment for ...
收藏 引用
32nd European signal processing Conference (EUSIPCO)
作者: Gualdron-Hurtado, Romario Jacome, Roman Urrea, Sergio Arguello, Henry Gonzalez, Luis Univ Ind Santander Dept Comp Sci Bucaramanga Colombia Univ Ind Santander Dept Elect Engn Bucaramanga Colombia
Deep-learning (DL)-based image deconvolution (ID) has exhibited remarkable recovery performance, surpassing traditional linear methods. However, unlike traditional ID approaches that rely on analytical properties of t... 详细信息
来源: 评论
Learning the degradation distribution for medical image superresolution via sparse swin transformer
收藏 引用
COMPUTERS & GRAPHICS-UK 2023年 114卷 168-178页
作者: Han, Xianjun Xie, Zhaoyang Chen, Qianqian Li, Xuejun Yang, Hongyu Anhui Univ Sch Comp Sci & Technol Hefei Peoples R China Sichuan Univ Coll Comp Sci Chengdu Peoples R China
High-resolution (HR) medical images can provide rich details, which are important for discovering subtle lesions to make diagnoses. Convolutional neural networks (CNNs) are widely used in this field, but struggle to m... 详细信息
来源: 评论
Robust Indoor Positioning of Automated Guided Vehicles in Internet of Things Networks With Deep Convolution neural Network Considering Adversarial Attacks
收藏 引用
IEEE Transactions on Vehicular Technology 2024年 第6期73卷 7748-7757页
作者: Elsisi, Mahmoud Rusidi, Akhmad Lutfi Tran, Minh-Quang Su, Chun-Lien Ali, Mahmoud N. National Kaohsiung University of Science and Technology Department of Electrical Engineering Kaohsiung807618 Taiwan Cairo11629 Egypt National Taiwan University of Science and Technology Department of Electronic and Computer Engineering Taipei106 Taiwan Tuetech University Department of Mechanical Engineering Thai Nguyen250000 Viet Nam
The effectiveness of positioning techniques that utilize the receiver signal strength (RSS) is highly dependent on the instability of the received signal strength indicator (RSSI). Up to now, there is no strategy that... 详细信息
来源: 评论
FAST AND PHYSICALLY ENRICHED DEEP NETWORK FOR JOINT LOW-LIGHT ENHANCEMENT AND image DEBLURRING  49
FAST AND PHYSICALLY ENRICHED DEEP NETWORK FOR JOINT LOW-LIGH...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Hoang, Trung McElvain, Jon Monga, Vishal Dolby Labs Burbank CA 91505 USA Penn State Univ University Pk PA USA
Joint low-light enhancement and deblurring is a challenging imaging inverse problem that estimates clean images from photography corrupted by both low-light and blurring artifacts. To address this task, we propose FEL...
来源: 评论
EFFICIENT CONTENT RECONSTRUCTION FOR HIGH DYNAMIC RANGE IMAGING  49
EFFICIENT CONTENT RECONSTRUCTION FOR HIGH DYNAMIC RANGE IMAG...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Zhang, Xiang Hu, Tao He, Jiashuang Yan, Qingsen Xian Univ Architecture & Technol Coll Informat & Control Engn Xian Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China
High Dynamic Range (HDR) images can be reconstructed from multiple Low Dynamic Range (LDR) images using existing deep neural network (DNN) techniques. Despite notable advancements, DNN-based methods still exhibit ghos... 详细信息
来源: 评论
AMA: attention-based multi-feature aggregation module for action recognition
收藏 引用
signal image AND VIDEO processing 2023年 第3期17卷 619-626页
作者: Yu, Mengyun Chen, Ying Jiangnan Univ Minist Educ Key Lab Adv Proc Control Light Ind Wuxi 214000 Jiangsu Peoples R China
Spatial information learning, temporal modeling and channel relationships capturing are important for action recognition in videos. In this work, an attention-based multi-feature aggregation (AMA) module that encodes ... 详细信息
来源: 评论
Analysis of tennis games using TrackNet-based neural network and applying morphological operations to the match videos
收藏 引用
signal image AND VIDEO processing 2023年 第4期17卷 1133-1141页
作者: Rocha, Nayara M. S. Pinto, Milena F. Biundini, Iago Z. Melo, Aurelio G. Marcato, Andre L. M. Fed Univ Juiz de Fora UFJF Juiz De Fora Brazil Fed Ctr Technol Educ Rio de Janeiro Rio De Janeiro Brazil
Computer vision plays a crucial role in current technological development, understanding a scene from the properties of 2D images. This research line becomes valuable in sports applications, where the scenario can be ... 详细信息
来源: 评论
Detection and localization of anomalous objects in video sequences using vision transformers and U-Net model
收藏 引用
signal image AND VIDEO processing 2024年 第8-9期18卷 6379-6390页
作者: Berroukham, Abdelhafid Housni, Khalid Lahraichi, Mohammed Ibn Tofail Univ Fac Sci L RI Lab MISC Team Kenitra 14000 Morocco
The detection and localization of anomalous objects in video sequences remain a challenging task in video analysis. Recent years have witnessed a surge in deep learning approaches, especially with recurrent neural net... 详细信息
来源: 评论
ITERATIVELY PRECONDITIONED GUIDANCE OF DENOISING (DIFFUSION) MODELS FOR image RESTORATION  49
ITERATIVELY PRECONDITIONED GUIDANCE OF DENOISING (DIFFUSION)...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Tirer, Tom Bar Ilan Univ Fac Engn Ramat Gan Israel
Training deep neural networks has become a common approach for addressing image restoration problems. An alternative for training a "task-specific" network for each observation model is to use pretrained dee... 详细信息
来源: 评论
Analysis of signals Detection methods Using image processing
Analysis of Signals Detection Methods Using Image Processing
收藏 引用
2023 Seminar on signal processing, SoSP 2023
作者: Morozova, Kristina Y. Obukhova, Nataliia A. Saint Petersburg Electrotechnical University LETI Saint Petersburg Department of Television and Video Engineering Russia
Algorithms for multisignals detection using image processing are investigated. Approaches based on digital image processing, as well as on the use of neural networks and deep learning are considered. A comparative ana... 详细信息
来源: 评论