咨询与建议

限定检索结果

文献类型

  • 5,805 篇 会议
  • 3,326 篇 期刊文献
  • 102 册 图书
  • 76 篇 学位论文
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,315 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,689 篇 工学
    • 3,444 篇 电气工程
    • 3,183 篇 计算机科学与技术...
    • 1,610 篇 软件工程
    • 1,432 篇 信息与通信工程
    • 855 篇 电子科学与技术(可...
    • 784 篇 生物医学工程(可授...
    • 550 篇 控制科学与工程
    • 509 篇 光学工程
    • 500 篇 生物工程
    • 325 篇 仪器科学与技术
    • 311 篇 机械工程
    • 161 篇 测绘科学与技术
    • 106 篇 化学工程与技术
    • 77 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
    • 43 篇 交通运输工程
  • 2,273 篇 理学
    • 1,204 篇 物理学
    • 709 篇 数学
    • 597 篇 生物学
    • 286 篇 系统科学
    • 252 篇 统计学(可授理学、...
    • 150 篇 化学
    • 80 篇 地球物理学
    • 48 篇 天文学
  • 2,112 篇 医学
    • 1,666 篇 临床医学
    • 250 篇 基础医学(可授医学...
    • 128 篇 特种医学
    • 98 篇 药学(可授医学、理...
  • 467 篇 管理学
    • 283 篇 管理科学与工程(可...
    • 194 篇 图书情报与档案管...
  • 52 篇 农学
  • 32 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 14 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学

主题

  • 1,007 篇 neural networks
  • 1,005 篇 deep learning
  • 725 篇 convolutional ne...
  • 610 篇 feature extracti...
  • 569 篇 signal processin...
  • 478 篇 convolutional ne...
  • 440 篇 image segmentati...
  • 416 篇 image processing
  • 376 篇 training
  • 273 篇 convolution
  • 247 篇 image reconstruc...
  • 236 篇 stochastic proce...
  • 185 篇 machine learning
  • 181 篇 image restoratio...
  • 177 篇 signal processin...
  • 168 篇 computational mo...
  • 166 篇 deep neural netw...
  • 154 篇 image classifica...
  • 150 篇 image coding
  • 135 篇 visualization

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 20 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 17 篇 tsinghua univ de...
  • 14 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 10 篇 arguello henry
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon

语言

  • 8,579 篇 英文
  • 383 篇 其他
  • 257 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9315 条 记 录,以下是731-740 订阅
排序:
An Application of Deep Features on image Quality Assessment  32
An Application of Deep Features on Image Quality Assessment
收藏 引用
Conference on signal processing, Sensor/Information Fusion, and Target Recognition XXXII
作者: Cakir, Serdar Sofu, Bugra Roketsan Inc PK 30 Elmadag TR-06780 Ankara Turkiye
Quality assessment of digital images plays an important role in modeling, implementation and optimization of image and video processing applications. One of the most popular methods in image quality assessment (IQA) i... 详细信息
来源: 评论
Improvement of lattice Boltzmann methods based on gated recurrent unit neural network
收藏 引用
signal image AND VIDEO processing 2023年 第7期17卷 3283-3291页
作者: Zhao, Yuchen Meng, Fei Lu, Xingtong Univ Shanghai Sci & Technol Dept Syst Sci Shanghai 200093 Peoples R China
Compared with traditional computational fluid dynamics methods, the lattice Boltzmann method (LBM) has the advantages of simple program structure, adaptability to complex boundaries, and easy parallel computation. How... 详细信息
来源: 评论
Unrolled Expectation Maximization for Sparse Radio Interferometric Imaging  32
Unrolled Expectation Maximization for Sparse Radio Interfero...
收藏 引用
32nd European signal processing Conference (EUSIPCO)
作者: Arab, Nawel Mhiri, Yassine Vin, Isabelle El Korso, Mohammed Nabil Larzabal, Pascal Univ Paris Saclay ENS Paris Saclay SATIE F-91190 Gif Sur Yvette France Univ Paris Site MAP5 F-75006 Paris France Univ Paris Saclay CentraleSupelec L2S F-91190 Gif Sur Yvette France
This paper introduces an unrolled Expectation Maximization (EM) algorithm for sparse image reconstruction from radio interferometric measurements in the presence of a compound Gaussian distribution noise. Traditional ... 详细信息
来源: 评论
GSGAN: Learning controllable geospatial images generation
收藏 引用
IET image processing 2023年 第2期17卷 401-417页
作者: Su, Xingzhe Lin, Yijun Zheng, Quan Wu, Fengge Zheng, Changwen Zhao, Junsuo Chinese Acad Sci Inst Software 4 Nansi St Zhongguancun Beijing Peoples R China Univ Chinese Acad Sci 19 Yuquan Rd Beijing Peoples R China Chinese Acad Sci Inst Software 4 Nansi St Zhongguancun Beijing 100190 Peoples R China
Compared with natural images, geospatial images cover larger area and have more complex image contents. There are few algorithms for generating controllable geospatial images, and their results are of low quality. In ... 详细信息
来源: 评论
Enhancing pneumonia diagnosis with ensemble-modified classifier and transfer learning in deep-CNN based classification of chest radiographs
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 93卷
作者: Rajeashwari, S. Arunesh, K. Madurai Kamarajar Univ Sri S Ramasamy Naidu Mem Coll Dept Comp Sci Sattur India
Pneumonia is a common and sometimes fatal lung infection that continues to be a major global health concern. The prediction of pneumonia has become a crucial factor in saving people's lives and improving their qua... 详细信息
来源: 评论
Practical Blind image Denoising via Swin-Conv-UNet and Data Synthesis
收藏 引用
Machine Intelligence Research 2023年 第6期20卷 822-836页
作者: Kai Zhang Yawei Li Jingyun Liang Jiezhang Cao Yulun Zhang Hao Tang Deng-Ping Fan Radu Timofte Luc Van Gool Computer Vision Lab ETH ZürichZürich8092Switzerland Computer Vision Lab University of WürzburgWürzburg97074Germany KU Leuven Leuven3000Belgium
While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising,existing methods mostly rely on simple noise assumptions,such as additive white Gaussian noise(AWG... 详细信息
来源: 评论
Deep multi-convolutional stacked capsule network fostered human gait recognition from enhanced gait energy image
收藏 引用
signal image AND VIDEO processing 2024年 第2期18卷 1375-1382页
作者: Nithyakani, P. Ferni Ukrit, M. SRM Inst Sci & Technol Dept Comp Technol Kattankulathur 603203 Tamil Nadu India SRM Inst Sci & Technol Dept Computat Intelligence Kattankulathur 603203 Tamil Nadu India
Gait recognition is a well-known biometric identification technology and is widely employed in different fields. Due to the advantages of deep learning, such as self-learning capability, high accuracy and excellent ge... 详细信息
来源: 评论
A hyperdimensional framework: Unveiling the interplay of RBP and GSN within CNNs for ultra-precise brain tumor classification
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 第PartB期96卷
作者: Ramalakshmi, K. Rajagopal, Sivakumar Kulkarni, Madhusudan B. Poddar, Harshit PSR Engn Coll Sivakasi 626140 Tamil Nadu India Vellore Inst Technol Sch Elect Engn Vellore 632014 Tamil Nadu India Univ Wisconsin Madison Dept Med Phys Madison WI 53705 USA
This study presents the RBP-CNN model, a convolutional neural network specifically designed for the precise classification of brain tumors in medical imaging. Conventional methods often encounter difficulties in extra... 详细信息
来源: 评论
Tensor-Based Chaotic Convolutional neural Network for Remote Sensing Data Classification  2
Tensor-Based Chaotic Convolutional Neural Network for Remote...
收藏 引用
2nd IEEE International Conference on signal, Information and Data processing, ICSIDP 2024
作者: Chen, Luobing Yin, Junjun Yang, Jian University of Science and Technology Beijing Beijing China Tsinghua University Beijing China
With the advancement of deep learning techniques, the classification of remote sensing data using artificial neural networks has emerged as a prominent research area. Despite this progress, the emulation of brain stru... 详细信息
来源: 评论
R2D2 image RECONSTRUCTION WITH MODEL UNCERTAINTY QUANTIFICATION IN RADIO ASTRONOMY  32
R2D2 IMAGE RECONSTRUCTION WITH MODEL UNCERTAINTY QUANTIFICAT...
收藏 引用
32nd European signal processing Conference (EUSIPCO)
作者: Aghabiglou, Amir Chu, Chung San Dabbech, Arwa Wiaux, Yves Heriot Watt Univ Inst Sensors Signals & Syst Edinburgh EH14 4AS Midlothian Scotland
The "Residual-to-Residual DNN series for high-Dynamic range imaging" (R2D2) approach was recently introduced for Radio-Interferometric (RI) imaging in astronomy. R2D2's reconstruction is formed as a seri... 详细信息
来源: 评论