咨询与建议

限定检索结果

文献类型

  • 5,836 篇 会议
  • 3,357 篇 期刊文献
  • 102 册 图书
  • 76 篇 学位论文
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,376 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,710 篇 工学
    • 3,420 篇 电气工程
    • 3,223 篇 计算机科学与技术...
    • 1,641 篇 软件工程
    • 1,452 篇 信息与通信工程
    • 859 篇 电子科学与技术(可...
    • 789 篇 生物医学工程(可授...
    • 570 篇 控制科学与工程
    • 511 篇 光学工程
    • 506 篇 生物工程
    • 331 篇 仪器科学与技术
    • 313 篇 机械工程
    • 161 篇 测绘科学与技术
    • 108 篇 化学工程与技术
    • 78 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,308 篇 理学
    • 1,208 篇 物理学
    • 713 篇 数学
    • 618 篇 生物学
    • 286 篇 系统科学
    • 253 篇 统计学(可授理学、...
    • 157 篇 化学
    • 83 篇 地球物理学
    • 49 篇 天文学
  • 2,152 篇 医学
    • 1,687 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 145 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 476 篇 管理学
    • 288 篇 管理科学与工程(可...
    • 196 篇 图书情报与档案管...
  • 63 篇 农学
  • 34 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 14 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,011 篇 deep learning
  • 1,008 篇 neural networks
  • 738 篇 convolutional ne...
  • 617 篇 feature extracti...
  • 579 篇 signal processin...
  • 480 篇 convolutional ne...
  • 434 篇 image segmentati...
  • 419 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 248 篇 image reconstruc...
  • 239 篇 stochastic proce...
  • 187 篇 machine learning
  • 179 篇 image restoratio...
  • 178 篇 signal processin...
  • 169 篇 computational mo...
  • 166 篇 deep neural netw...
  • 157 篇 image classifica...
  • 146 篇 image coding
  • 140 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 15 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon
  • 9 篇 li bo

语言

  • 8,550 篇 英文
  • 487 篇 其他
  • 258 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9376 条 记 录,以下是811-820 订阅
排序:
Learning-Based Noise Component Map Estimation for image Denoising
收藏 引用
IEEE signal processing LETTERS 2022年 29卷 1407-1411页
作者: Bahnemiri, Sheyda Ghanbaralizadeh Ponomarenko, Mykola Egiazarian, Karen Tampere Univ Tampere 33100 Finland
A problem of image denoising, when images are corrupted by a non-stationary noise, is considered in this paper. Since, in practice, no a priori information on noise is available, noise statistics should be pre-estimat... 详细信息
来源: 评论
ARE OBJECTIVE EXPLANATORY EVALUATION METRICS TRUSTWORTHY? AN ADVERSARIAL ANALYSIS  31
ARE OBJECTIVE EXPLANATORY EVALUATION METRICS TRUSTWORTHY? AN...
收藏 引用
2024 International Conference on image processing
作者: Chowdhury, Prithwijit Prabhushankar, Mohit AlRegib, Ghassan Deriche, Mohamed Georgia Inst Technol Sch Elect & Comp Engn OLIVES Ctr Signal & Informat Proc Atlanta GA 30332 USA Ajman Univ Ajman U Arab Emirates
Explainable AI (XAI) has revolutionized the field of deep learning by empowering users to have more trust in neural network models. The field of XAI allows users to probe the inner workings of these algorithms to eluc... 详细信息
来源: 评论
neural Data-Enabled Predictive Control  20
Neural Data-Enabled Predictive Control
收藏 引用
20th IFAC Symposium on System Identification (SYSID)
作者: Lazar, Mircea Eindhoven Univ Technol Eindhoven Netherlands
Data-enabled predictive control (DeePC) for linear systems utilizes data matrices of recorded trajectories to directly predict new system trajectories, which is very appealing for real-life applications. In this paper... 详细信息
来源: 评论
Cascaded transformer U-net for image restoration
收藏 引用
signal processing 2023年 第1期206卷
作者: Yan, Longbin Zhao, Min Liu, Shumin Shi, Shuaikai Chen, Jie Northwestern Polytech Univ Shenzhen Res & Dev Inst Shenzhen Peoples R China Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710072 Peoples R China Blueye Intelligence Zhenjiang Peoples R China
image restoration is one of the most important computer vision tasks, aiming at recovering high-quality images from degraded or low-quality observations. The restoration methods based on convolutional neural networks ... 详细信息
来源: 评论
CervixFuzzyFusion for cervical cancer cell image classification
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2023年 第1期85卷
作者: Hemalatha, K. Vetriselvi, V. Dhandapani, Meignanamoorthi Gladys, A. Aruna Anna Univ Dept Comp Sci & Engn Chennai 600025 Tamilnadu India
Cervical cancer is a common type of tumor that occurs in the cervix. The cervical cells in the cervix contain millions of cells with various orientations and overlaps. It is an extensive process to segment and annotat... 详细信息
来源: 评论
A Convolutional neural Network for Ultrasound Plane Wave image Segmentation With a Small Amount of Phase Array Channel Data
收藏 引用
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL 2022年 第7期69卷 2270-2281页
作者: Zhang, Fuben Luo, Lin Zhang, Yu Gao, Xiaorong Li, Jinlong Southwest Jiaotong Univ Dept Sch Phys Sci & Technol Chengdu 610031 Peoples R China
Single-angle plane wave has a huge potential in ultrasound high frame rate imaging, which, however, has a number of difficulties, such as low imaging quality and poor segmentation results. To overcome these difficulti... 详细信息
来源: 评论
Disentanglement of content and style features in multi-center cytology images via contrastive self-supervised learning
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 第PartB期95卷
作者: Tian, Chongzhe Liu, Xiuli Cheng, Shenghua Bai, Jiaxin Chen, Li Zeng, Shaoqun Huazhong Univ Sci & Technol Britton Chance Ctr Wuhan Natl Lab Optoelect Wuhan Peoples R China Huazhong Univ Sci & Technol Key Lab Biomed Photon Wuhan Natl Lab Optoelect MoE Wuhan Peoples R China Southern Med Univ Sch Biomed Engn Guangzhou Peoples R China Southern Med Univ Guangdong Prov Key Lab Med Image Proc Guangzhou Peoples R China Huazhong Univ Sci & Technol Tongji Hosp Tongji Med Coll Dept Clin Lab Wuhan Peoples R China
Multi -center cervical cytology images have various image styles due to the differences in staining and imaging techniques, which pose a significant challenge to the performance of automated cervical cancer diagnosis ... 详细信息
来源: 评论
Enhancing smart home appliance recognition with wavelet and scalogram analysis using data augmentation
收藏 引用
INTEGRATED COMPUTER-AIDED ENGINEERING 2024年 第3期31卷 307-326页
作者: Salazar-Gonzalez, Jose L. Maria Luna-Romera, Jose Carranza-Garcia, Manuel Alvarez-Garcia, Juan A. Soria-Morillo, Luis M. Univ Seville Div Comp Sci Seville Spain
The development of smart homes, equipped with devices connected to the Internet of Things (IoT), has opened up new possibilities to monitor and control energy consumption. In this context, non-intrusive load monitorin... 详细信息
来源: 评论
SELF-KNOWLEDGE DISTILLATION WITH LEARNING FROM ROLE-MODEL SAMPLES  49
SELF-KNOWLEDGE DISTILLATION WITH LEARNING FROM ROLE-MODEL SA...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Xu, Kai Wang, Lichun Zhang, Huiyong Yin, Baocai Beijing Univ Technol Fac Informat Technol Beijing Peoples R China
Self-knowledge distillation does not require a pre-trained teacher network like traditional knowledge distillation. Existing methods either require additional parameters or require additional memory consumption. To al... 详细信息
来源: 评论
PS-NERV: PATCH-WISE STYLIZED neural REPRESENTATIONS FOR VIDEOS  30
PS-NERV: PATCH-WISE STYLIZED NEURAL REPRESENTATIONS FOR VIDE...
收藏 引用
30th IEEE International Conference on image processing (ICIP)
作者: Bai, Yunpeng Dong, Chao Wang, Cairong Yuan, Chun Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Beijing Peoples R China Shanghai AI Lab Shanghai Peoples R China
We study how to represent a video with implicit neural representations (INRs). Classical INRs methods generally utilize MLPs to map input coordinates to output pixels. While some recent works have tried to directly re... 详细信息
来源: 评论