咨询与建议

限定检索结果

文献类型

  • 5,836 篇 会议
  • 3,357 篇 期刊文献
  • 102 册 图书
  • 76 篇 学位论文
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,376 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,710 篇 工学
    • 3,420 篇 电气工程
    • 3,223 篇 计算机科学与技术...
    • 1,641 篇 软件工程
    • 1,452 篇 信息与通信工程
    • 859 篇 电子科学与技术(可...
    • 789 篇 生物医学工程(可授...
    • 570 篇 控制科学与工程
    • 511 篇 光学工程
    • 506 篇 生物工程
    • 331 篇 仪器科学与技术
    • 313 篇 机械工程
    • 161 篇 测绘科学与技术
    • 108 篇 化学工程与技术
    • 78 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,308 篇 理学
    • 1,208 篇 物理学
    • 713 篇 数学
    • 618 篇 生物学
    • 286 篇 系统科学
    • 253 篇 统计学(可授理学、...
    • 157 篇 化学
    • 83 篇 地球物理学
    • 49 篇 天文学
  • 2,152 篇 医学
    • 1,687 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 145 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 476 篇 管理学
    • 288 篇 管理科学与工程(可...
    • 196 篇 图书情报与档案管...
  • 63 篇 农学
  • 34 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 14 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,011 篇 deep learning
  • 1,008 篇 neural networks
  • 738 篇 convolutional ne...
  • 617 篇 feature extracti...
  • 579 篇 signal processin...
  • 480 篇 convolutional ne...
  • 434 篇 image segmentati...
  • 419 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 248 篇 image reconstruc...
  • 239 篇 stochastic proce...
  • 187 篇 machine learning
  • 179 篇 image restoratio...
  • 178 篇 signal processin...
  • 169 篇 computational mo...
  • 166 篇 deep neural netw...
  • 157 篇 image classifica...
  • 146 篇 image coding
  • 140 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 15 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon
  • 9 篇 li bo

语言

  • 8,550 篇 英文
  • 487 篇 其他
  • 258 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9376 条 记 录,以下是891-900 订阅
排序:
DELVING INTO THE EXPLAINABILITY OF PROTOTYPE-BASED CNN FOR BIOLOGICAL CELL ANALYSIS  31
DELVING INTO THE EXPLAINABILITY OF PROTOTYPE-BASED CNN FOR B...
收藏 引用
2024 International Conference on image processing
作者: Blanchard, Martin Delezay, Olivier Ducottet, Christophe Muselet, Damien Univ Jean Monnet St Etienne CNRS Inst Optique Grad Sch Lab Hubert CurienUMR 5516 St Etienne France Univ Jean Monnet Lab Sainboise INSERM UMR 1059 St Etienne France
Deep learning for automated cell imaging analysis has become a tool of choice to process large amounts of data. But many of these methods lack explainability, slowing down their deployment for tasks such as diagnosis.... 详细信息
来源: 评论
TARGET OPTIMIZATION DIRECTION GUIDED TRANSFER LEARNING FOR image CLASSIFICATION  49
TARGET OPTIMIZATION DIRECTION GUIDED TRANSFER LEARNING FOR I...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Han, Kelvin Ting Zuo Zhang, Shengxuming Freixas, Gerard Marcos Feng, Zunlei Jin, Cheng Fudan Univ Sch Comp Sci Shanghai Peoples R China Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China MCT Innovat Ctr Callig & Painting Creat Technol Beijing Peoples R China
At present, deep learning has made impressive achievements in various fields;however, effectively training deep neural networks on small data sets remains a significant challenge. Transfer learning, as a method of eff... 详细信息
来源: 评论
stochastic Super-Resolution For Gaussian Textures  48
Stochastic Super-Resolution For Gaussian Textures
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Pierret, Émile Galerne, Bruno Université de Tours Cnrs Institut Denis Poisson Université d'Orléans France France
Super-resolution (SR) is an ill-posed inverse problem which consists in proposing high-resolution images consistent with a given low-resolution one. While most SR algorithms are deterministic, stochastic SR deals with... 详细信息
来源: 评论
ADAPID: AN ADAPTIVE PID OPTIMIZER FOR TRAINING DEEP neural NETWORKS  47
ADAPID: AN ADAPTIVE PID OPTIMIZER FOR TRAINING DEEP NEURAL N...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and signal processing (ICASSP)
作者: Weng, Boxi Sun, Jian Sadeghi, Alireza Wang, Gang Beijing Inst Technol Sch Automat Beijing 100081 Peoples R China Chongqing Innovat Ctr Beijing Inst Technol Chongqing 401120 Peoples R China Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA
Deep neural networks (DNNs) have well-documented merits in learning nonlinear functions in high-dimensional spaces. stochastic gradient descent (SGD)-type optimization algorithms are the 'workhorse' for traini... 详细信息
来源: 评论
Learning active contour models based on self-attention for breast ultrasound image segmentation
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 89卷
作者: Zhao, Yu Shen, Xiaoyan Chen, Jiadong Qian, Wei Sang, Liang Ma, He Northeastern Univ Coll Med & Biol Informat Engn Shenyang 110819 Liaoning Peoples R China Dongguan Univ Technol Sch Life & Hlth Technol Dongguan 523808 Guangdong Peoples R China China Med Univ Hosp 1 Dept Ultrasound Shenyang 110002 Liaoning Peoples R China Northeastern Univ Key Lab Intelligent Comp Med Image Minist Educ Shenyang 110819 Liaoning Peoples R China
Computer-aided diagnosis (CAD) systems based on ultrasound have been developed and widely promoted in breast cancer screening. Due to the characteristics of low contrast and speckle noises, breast ultrasound image seg... 详细信息
来源: 评论
Noise-robust registration of microscopic height data using convolutional neural networks
Noise-robust registration of microscopic height data using c...
收藏 引用
SPIE Conference on Future Sensing Technologies
作者: Siemens, Stefan Kaestner, Markus Reithmeier, Eduard Leibniz Univ Hannover Inst Measurement & Automat Control Univ 1 D-30823 Hannover Germany
In this work, a deep convolutional neural network is proposed to improve the registration of microtopographic data. For this purpose, different mechanical surfaces were optically measured using a confocal laser scanni... 详细信息
来源: 评论
3D FACE RECONSTRUCTION BASED ON WEAKLY-SUPERVISED LEARNING MORPHABLE FACE MODEL  30
3D FACE RECONSTRUCTION BASED ON WEAKLY-SUPERVISED LEARNING M...
收藏 引用
30th IEEE International Conference on image processing (ICIP)
作者: Liang, Kai-Wen Li, Pin-Hsuan Lo, Chung-Hsun Wang, Chien-Yao Chen, Yung-Fang Wang, Jia-Ching Chang, Pao-Chi Natl Cent Univ Dept Commun Engn Taoyuan Taiwan Natl Cent Univ Dept Comp Sci & Informat Engn Taoyuan Taiwan Acad Sinica Inst Informat Sci Taipei Taiwan
In this paper, we propose a system for 3D face model reconstruction. Earlier studies on reconstruction methods included the software modeling methods or the instrument scanning modeling methods. But both of the above ... 详细信息
来源: 评论
3D POSE ESTIMATION FROM MONOCULAR VIDEO WITH CAMERA-BONE ANGLE REGULARIZATION ON THE image FEATURE  49
3D POSE ESTIMATION FROM MONOCULAR VIDEO WITH CAMERA-BONE ANG...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Ishii, Asuka Ikeda, Hiroo NEC Corp Ltd Tokyo Japan
In this paper, we propose a monocular 3D pose estimation method which explicitly takes into account the angles between the camera optical axis and bones (camera-bone angles) as well as temporal information. The propos... 详细信息
来源: 评论
Powerful Lossy Compression for Noisy images
Powerful Lossy Compression for Noisy Images
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Cai, Shilv Liang, Xiaoguo Cao, Shuning Yan, Luxin Zhong, Sheng Chen, Liqun Zu, Xu Huazhong Univ Sci & Technol Wuhan Peoples R China Natl Key Lab Multispectral Informat Intelligent P Beijing Peoples R China
image compression and denoising represent fundamental challenges in image processing with many real-world applications. To address practical demands, current solutions can be categorized into two main strategies: 1) s... 详细信息
来源: 评论
Deep Learning Network Optimization Combining 3D Imaging and Multidimensional signal processing  5th
Deep Learning Network Optimization Combining 3D Imaging and ...
收藏 引用
5th International Conference on 3D Imaging Technologies—Multidimensional signal processing and Deep Learning, 3DIT-MSP and DL 2023
作者: Hou, Juncheng Yang, Diansheng Chen, Wei Shanghai Yuansi Standard Science and Technology Co. Ltd. Shanghai China Shaoguan University Zhenjiang District Shaoguan China Shanghai Research Institute of Criminal Science and Technology Shanghai200083 China
This research aims to optimize the deep learning network by combining three-dimensional imaging technology and multidimensional signal processing methods to improve the processing capabilities of complex three-dimensi... 详细信息
来源: 评论