咨询与建议

限定检索结果

文献类型

  • 5,836 篇 会议
  • 3,357 篇 期刊文献
  • 102 册 图书
  • 76 篇 学位论文
  • 3 篇 资讯
  • 1 篇 专利

馆藏范围

  • 9,376 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 6,710 篇 工学
    • 3,420 篇 电气工程
    • 3,223 篇 计算机科学与技术...
    • 1,641 篇 软件工程
    • 1,452 篇 信息与通信工程
    • 859 篇 电子科学与技术(可...
    • 789 篇 生物医学工程(可授...
    • 570 篇 控制科学与工程
    • 511 篇 光学工程
    • 506 篇 生物工程
    • 331 篇 仪器科学与技术
    • 313 篇 机械工程
    • 161 篇 测绘科学与技术
    • 108 篇 化学工程与技术
    • 78 篇 材料科学与工程(可...
    • 50 篇 航空宇航科学与技...
  • 2,308 篇 理学
    • 1,208 篇 物理学
    • 713 篇 数学
    • 618 篇 生物学
    • 286 篇 系统科学
    • 253 篇 统计学(可授理学、...
    • 157 篇 化学
    • 83 篇 地球物理学
    • 49 篇 天文学
  • 2,152 篇 医学
    • 1,687 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 145 篇 特种医学
    • 98 篇 药学(可授医学、理...
    • 53 篇 医学技术(可授医学...
  • 476 篇 管理学
    • 288 篇 管理科学与工程(可...
    • 196 篇 图书情报与档案管...
  • 63 篇 农学
  • 34 篇 法学
  • 29 篇 艺术学
  • 16 篇 教育学
  • 14 篇 经济学
  • 8 篇 军事学
  • 6 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 1,011 篇 deep learning
  • 1,008 篇 neural networks
  • 738 篇 convolutional ne...
  • 617 篇 feature extracti...
  • 579 篇 signal processin...
  • 480 篇 convolutional ne...
  • 434 篇 image segmentati...
  • 419 篇 image processing
  • 380 篇 training
  • 277 篇 convolution
  • 248 篇 image reconstruc...
  • 239 篇 stochastic proce...
  • 187 篇 machine learning
  • 179 篇 image restoratio...
  • 178 篇 signal processin...
  • 169 篇 computational mo...
  • 166 篇 deep neural netw...
  • 157 篇 image classifica...
  • 146 篇 image coding
  • 140 篇 neural network

机构

  • 30 篇 univ chinese aca...
  • 26 篇 peng cheng lab p...
  • 24 篇 tianjin univ sch...
  • 19 篇 nanyang technol ...
  • 18 篇 xidian univ sch ...
  • 18 篇 tsinghua univ de...
  • 15 篇 university of sc...
  • 14 篇 univ sci & techn...
  • 14 篇 harbin inst tech...
  • 14 篇 xidian univ natl...
  • 13 篇 university of el...
  • 13 篇 shanghai univ sc...
  • 13 篇 northwestern pol...
  • 12 篇 beijing inst tec...
  • 12 篇 school of electr...
  • 12 篇 university of ch...
  • 12 篇 shanghai jiao to...
  • 12 篇 south china univ...
  • 11 篇 shanghai jiao to...
  • 11 篇 shanghai jiao to...

作者

  • 16 篇 zhang yan
  • 15 篇 eldar yonina c.
  • 13 篇 liu dong
  • 13 篇 zhang lei
  • 12 篇 li li
  • 12 篇 liu xin
  • 12 篇 gabbouj moncef
  • 12 篇 zhai guangtao
  • 11 篇 li yang
  • 11 篇 wang yan
  • 10 篇 yang bin
  • 10 篇 wang wei
  • 9 篇 kamata sei-ichir...
  • 9 篇 li sumei
  • 9 篇 liu ying
  • 9 篇 yang yang
  • 9 篇 liu hongwei
  • 9 篇 lian qiusheng
  • 9 篇 sohn kwanghoon
  • 9 篇 li bo

语言

  • 8,550 篇 英文
  • 487 篇 其他
  • 258 篇 中文
  • 37 篇 法文
  • 37 篇 土耳其文
  • 5 篇 俄文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 斯洛文尼亚文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing"
9376 条 记 录,以下是921-930 订阅
排序:
Research and Application of U2-NetP Network Incorporating Coordinate Attention for Ship Draft Reading in Complex Situations
收藏 引用
JOURNAL OF signal processing SYSTEMS FOR signal image AND VIDEO TECHNOLOGY 2023年 第2-3期95卷 177-195页
作者: Li, Weihao Zhan, Wei Han, Tao Wang, Peiwen Liu, Hu Xiong, Mengyuan Hong, Shengbing Yangtze Univ Sch Comp Sci Jingzhou 434023 Hubei Peoples R China
Ship draft reading is an essential link to the draft survey. At present, manual observation is primarily used to determine a ship's draft. However, manual observation is easily affected by complex situations such ... 详细信息
来源: 评论
CMCL: Cross-Modal Compressive Learning for Resource-Constrained Intelligent IoT Systems
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2024年 第15期11卷 25534-25542页
作者: Chen, Bin Tang, Dong Huang, Yujun An, Baoyi Wang, Yaowei Wang, Xuan Harbin Inst Technol Shenzhen Sch Comp Sci & Technol Shenzhen 518055 Guangdong Peoples R China Guangdong Prov Key Lab Novel Secur Intelligence Te Shenzhen Peoples R China Peng Cheng Lab Res Ctr Artificial Intelligence Shenzhen 518055 Guangdong Peoples R China Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Guangdong Peoples R China Huawei Technol Co Ltd Network Technol Lab Shenzhen 518055 Peoples R China
Compressive learning (CL) has proven to be highly successful in executing joint signal sampling and inference for intricate vision tasks through resource-limited Internet of Things (IoT) devices. Recent studies have t... 详细信息
来源: 评论
Adaptive image enhancement technology based on bad weather  4
Adaptive image enhancement technology based on bad weather
收藏 引用
4th International Conference on Advanced Algorithms and signal image processing, AASIP 2024
作者: Chang, Jiaxiu Hou, Wenshuai Chen, Wenjing Yan, Jun Cui, Kaige College of Transportation Shandong University of Science and Technology Qingdao266590 China
To tackle the formidable challenges that adverse weather conditions pose for image object detection, this paper presents an innovative approach grounded in the image Adaptive YOLO (IA-YOLO) framework. The framework ha... 详细信息
来源: 评论
Surface defect identification method for hot-rolled steel plates based on random data balancing and lightweight convolutional neural network
收藏 引用
signal image AND VIDEO processing 2024年 第8-9期18卷 5775-5786页
作者: Zeng, Weihui Wang, Junyan Chen, Peng Zhong, Zhimin Hu, Gensheng Bao, Wenxia Anhui Univ Sch Internet Hefei 230039 Peoples R China AIMS Technol Co Ltd Hefei 230088 Peoples R China Anhui Univ Natl Engn Res Ctr Agroecol Big Data Anal & Applica Hefei 230601 Peoples R China
Hot-rolled strip steel is an extremely important industrial foundational material. The rapid and precise identification of surface defects in hot-rolled strip steel is beneficial for enhancing the quality of steel mat... 详细信息
来源: 评论
An image compression and encryption scheme for similarity retrieval
收藏 引用
signal processing-image COMMUNICATION 2023年 第1期119卷
作者: Meng, Ke Wo, Yan South China Univ Technol Coll Comp Sci & Engn Guangzhou 510641 Peoples R China
With the development of cloud computing, people usually outsource encrypted images for saving storage and protecting privacy. However, traditional image encryption methods not only hinder the availability of images su... 详细信息
来源: 评论
SELF-SUPERVISED LEARNING FOR CONTEXT-INDEPENDENT DFD NETWORK USING MULTI-VIEW RANK SUPERVISION  30
SELF-SUPERVISED LEARNING FOR CONTEXT-INDEPENDENT DFD NETWORK...
收藏 引用
30th IEEE International Conference on image processing (ICIP)
作者: Mishima, Nao Seki, Akihito Hiura, Shinsaku Toshiba Co Ltd Corp Res & Dev Ctr Tokyo Japan Univ Hyogo Kobe Hyogo Japan
Although context-based monocular depth estimation has shown remarkable improvement, the adaptation to unseen contexts is still a major challenge. On the other hand, the use of physical depth cues, such as defocus asso... 详细信息
来源: 评论
RM-UNet: UNet-like Mamba with rotational SSM module for medical image segmentation
收藏 引用
signal image AND VIDEO processing 2024年 第11期18卷 8427-8443页
作者: Tang, Hao Huang, Guoheng Cheng, Lianglun Yuan, Xiaochen Tao, Qi Chen, Xuhang Zhong, Guo Yang, Xiaohui Guangdong Univ Technol Sch Comp Sci & Technol Guangzhou 510006 Peoples R China Macao Polytech Univ Fac Appl Sci Macau 999078 Peoples R China Guangdong Technion Israel Inst Technol Dept Mech Engn Robot Shantou 515063 Peoples R China Huizhou Univ Sch Comp Sci & Engn Huizhou 516007 Peoples R China Guangdong Univ Foreign Studies Sch Informat Sci & Technol Guangzhou 510006 Peoples R China Sun Yat sen Univ Affiliated Hosp 3 Dept Gynecol Guangzhou Peoples R China
Accurate segmentation of tissues and lesions is crucial for disease diagnosis, treatment planning, and surgical navigation. Yet, the complexity of medical images presents significant challenges for traditional Convolu... 详细信息
来源: 评论
signal Detection in Three-Dimensional Confocal Microscopy images through Deep Learning  18
Signal Detection in Three-Dimensional Confocal Microscopy Im...
收藏 引用
18th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)
作者: Paulik, Robert Kozlovszky, Miklos Molnar, Bela Obuda Univ 3DHISTECH Ltd Budapest Hungary Obuda Univ BioTech Res Ctr Budapest Hungary 3DHISTECH Ltd Image Anal Dept Budapest Hungary
As routine pathology moves into the digital age;the spread of high-efficiency and high-resolution tissue scanners opens up the possibility of routine analysis of three-dimensional samples containing fluorescent geneti... 详细信息
来源: 评论
SSVEP-EEG Feature Enhancement Method Using an image Sharpening Filter
收藏 引用
IEEE TRANSACTIONS ON neural SYSTEMS AND REHABILITATION ENGINEERING 2022年 30卷 115-123页
作者: Yan, Wenqiang Xu, Guanghua Du, Yuhui Chen, Xiaobi Xi An Jiao Tong Univ Sch Mech Engn State Key Lab Mfg Syst Engn Xian 710049 Peoples R China Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China
Steady-state visual evoked potential (SSVEP) is widely used in brain computer interface (BCI), medical detection, and neuroscience, so there is significant interest in enhancing SSVEP features via signal processing fo... 详细信息
来源: 评论
SSLCT: A Convolutional Transformer for Synthetic Speech Localization  7
SSLCT: A Convolutional Transformer for Synthetic Speech Loca...
收藏 引用
7th IEEE International Conference on Multimedia Information processing and Retrieval (MIPR)
作者: Bhagtani, Kratika Yadav, Amit Kumar Singh Bestagini, Paolo Delp, Edward J. Purdue Univ Video & Image Proc Lab VIPER Sch Elect & Comp Engn W Lafayette IN 47907 USA Politecn Milan Dipartimento Elettron Informaz & Bioingn Milan Italy
Deep learning methods can now generate high quality synthetic speech which is perceptually indistinguishable from real speech. As synthetic speech can be used for nefarious purposes, speech forensics methods to detect... 详细信息
来源: 评论