咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 50 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 12 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 283 篇 理学
    • 224 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 8 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 59 篇 医学
    • 47 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 513 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是141-150 订阅
排序:
stochastic Fusion for Multi-stream neural Network in Video Classification
Stochastic Fusion for Multi-stream Neural Network in Video C...
收藏 引用
Annual Summit and Conference of the Asia-Pacific-signal-and-Information-processing-Association (APSIPA ASC)
作者: Huang, Yu-Min Tseng, Huan-Hsin Chien, Jen-Tzung Natl Chiao Tung Univ Dept Elect & Comp Engn Hsinchu Taiwan Univ Michigan Dept Radiat Oncol Ann Arbor MI 48109 USA
Spatial image and optical how provide complementary information for video representation and classification. Traditional methods separately encode two stream signals and then fuse them at the end of streams. This pape... 详细信息
来源: 评论
No-reference image Quality Assessment Based on a Multi-feature Extraction Network  20
No-reference Image Quality Assessment Based on a Multi-featu...
收藏 引用
2nd International Conference on image, Video and signal processing, IVSP 2020
作者: Zhang, Hainan Meng, Fang Han, Yawen Communication University of China School of Information and Communication Engineering Beijing China Communication University of China School Information and Communication Engineering Beijing China
Deep convolutional neural network (DCNN) has achieved high performance on computer vision. However, it's hard to directly apply to image quality assessment due to lack of enough subjective scores. In this paper, w... 详细信息
来源: 评论
Monolithic-3D Inference Engine with IGZO Based Ferroelectric Thin Film Transistor Synapses
TechRxiv
收藏 引用
TechRxiv 2022年
作者: De, Sourav Lederer, Maximilian Raffel, Yannick Lehninger, David Thunder, Sunanda Jank, Michael P.M. Ali, Tarek Kämpfe, Thomas Seidel, Konrad Sanctis, Shawn Fraunhofer-Institut für Photonische Mikrosysteme IPMS Center Nanoelectronic Technologies Dresden Germany Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie Erlangen Germany
Instigated by the plethora of data generated by edge devices and IoT devices, machine learning has become the de facto choice of everyone for solving many tasks. Applications such as intelligent healthcare monitoring ... 详细信息
来源: 评论
Use of images Augmentation and Implementation of Doubly stochastic Models for Improving Accuracy of Recognition Algorithms Based on Convolutional neural Networks
Use of Images Augmentation and Implementation of Doubly Stoc...
收藏 引用
Systems of signal Synchronization, Generating and processing in Telecommunications (SYNCHROINFO)
作者: V. E. Dementyiev N. A. Andriyanov K. K. Vasilyiev Ulyanovsk State Technical University Ulyanovsk Russia JSC “RPC “Istok” named after Shokin” Fryazino Russia
The article proposes methods for increasing the efficiency of pattern recognition in images using convolutional neural networks in conditions of insufficient reference images. It is proposed to use various kinds of im... 详细信息
来源: 评论
Regularizing neural Networks by stochastically Training Layer Ensembles
Regularizing Neural Networks by Stochastically Training Laye...
收藏 引用
IEEE Workshop on Machine Learning for signal processing
作者: Alex Labach Shahrokh Valaee University of Toronto Toronto Canada
Dropout and similar stochastic neural network regularization methods are often interpreted as implicitly averaging over a large ensemble of models. We propose STE (stochastically trained ensemble) layers, which enhanc... 详细信息
来源: 评论
Vehicle logo recognition using whitening transformation and deep learning
收藏 引用
signal image AND VIDEO processing 2019年 第1期13卷 111-119页
作者: Soon, Foo Chong Khaw, Hui Ying Chuah, Joon Huang Kanesan, Jeevan Univ Malaya Fac Engn Dept Elect Engn Kuala Lumpur 50603 Malaysia
This paper presents a vehicle logo recognition using a deep convolutional neural network (CNN) method and whitening transformation technique to remove redundancy of adjacent image pixels. Backpropagation algorithm wit... 详细信息
来源: 评论
Improvement of edge-tracking methods using Genetic algorithm and neural network  5
Improvement of edge-tracking methods using Genetic algorithm...
收藏 引用
5th Iranian Conference on signal processing and Intelligent Systems (ICSPIS)
作者: Shabankareh, Sajjad Ghazanfari Shabankareh, Saeid Ghazanfari Islamic Azad Univ Fac Elect Engn Shiraz Iran Aix Marseille Univ Fac Sci & Technol Marseille France
One of the most basic and important operations in the field of image processing is image extraction and detection. Edge recognition is very important for image clarity and image segmentation. The importance of edge de... 详细信息
来源: 评论
Deep Product Quantization Module for Efficient image Retrieval
Deep Product Quantization Module for Efficient Image Retriev...
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Meihan Liu Yongxing Dai Yan Bai Ling-Yu Duan Institute of Digital Media Peking University China
Product Quantization (PQ) is one of the most popular Approximate Nearest Neighbor (ANN) methods for large-scale image retrieval, bringing better performance than hashing based methods. In recent years, several works e...
来源: 评论
IMPROVING SUPER RESOLUTION methods VIA INCREMENTAL RESIDUAL LEARNING  26
IMPROVING SUPER RESOLUTION METHODS VIA INCREMENTAL RESIDUAL ...
收藏 引用
26th IEEE International Conference on image processing (ICIP)
作者: Aadil, Muneeb Rahim, Rafia Hussain, Sibt Ul Natl Univ Comp & Emerging Sci Reveal Ai Lab Islamabad Pakistan
Recently, Convolutional neural Networks (CNNs) have shown promising performance in super-resolution (SR). However, these methods operate primarily on Low Resolution (LR) inputs for memory efficiency but this limits, a... 详细信息
来源: 评论
SSGD: Sparsity-Promoting stochastic Gradient Descent Algorithm for Unbiased Dnn Pruning
SSGD: Sparsity-Promoting Stochastic Gradient Descent Algorit...
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Ching-Hua Lee Igor Fedorov Bhaskar D. Rao Harinath Garudadri Department of ECE University of California San Diego ARM ML Research
While deep neural networks (DNNs) have achieved state-of-the-art results in many fields, they are typically over-parameterized. Parameter redundancy, in turn, leads to inefficiency. Sparse signal recovery (SSR) techni... 详细信息
来源: 评论