咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 50 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 12 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 283 篇 理学
    • 224 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 8 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 59 篇 医学
    • 47 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 513 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是161-170 订阅
排序:
Robust 3D reconstruction of rib cage bones in computed tomography images, by combining knowledge from radiological, machine learning, and innovative graph guidance
收藏 引用
Research on Biomedical Engineering 2019年 第1期35卷 45-56页
作者: Sais, Barbara Teixeira Vital, Daniel Aparecido Moraes, Matheus Cardoso Laboratory of Image and Signal Processing of the Institute of Science and Technology Federal University of São Paulo – UNIFESP 330 Talim St. room 108 Jardim Aeroporto CEP São José dos CamposSP12231-280 Brazil
Purpose: More than 70 million computed tomography scans are made per year. A great number of them aim at the thoraxic region, due to the number of organs and structures within it. The 3D visualization of these structu... 详细信息
来源: 评论
Euclid preparation - XXiiI. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images
收藏 引用
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 2023年 第3期520卷 3529-3548页
作者: Bisigello, L. Conselice, C. J. Baes, M. Bolzonella, M. Brescia, M. Cavuoti, S. Cucciati, O. Humphrey, A. Hunt, L. K. Maraston, C. Pozzetti, L. Tortora, C. van Mierlo, S. E. Aghanim, N. Auricchio, N. Baldi, M. Bender, R. Bodendorf, C. Bonino, D. Branchini, E. Brinchmann, J. Camera, S. Capobianco, V. Carbone, C. Carretero, J. Castander, F. J. Castellano, M. Cimatti, A. Congedo, G. Conversi, L. Copin, Y. Corcione, L. Courbin, F. Cropper, M. Da Silva, A. Degaudenzi, H. Douspis, M. Dubath, F. Duncan, C. A. J. Dupac, X. Dusini, S. Farrens, S. Ferriol, S. Frailis, M. Franceschi, E. Franzetti, P. Fumana, M. Garilli, B. Gillard, W. Gillis, B. Giocoli, C. Grazian, A. Grupp, F. Guzzo, L. Haugan, S. V. H. Holmes, W. Hormuth, F. Hornstrup, A. Jahnke, K. Kuemmel, M. Kermiche, S. Kiessling, A. Kilbinger, M. Kohley, R. Kunz, M. Kurki-Suonio, H. Ligori, S. Lilje, P. B. Lloro, I. Maiorano, E. Mansutti, O. Marggraf, O. Markovic, K. Marulli, F. Massey, R. Maurogordato, S. Medinaceli, E. Meneghetti, M. Merlin, E. Meylan, G. Moresco, M. Moscardini, L. Munari, E. Niemi, S. M. Padilla, C. Paltani, S. Pasian, F. Pedersen, K. Pettorino, V. Polenta, G. Poncet, M. Popa, L. Raison, F. Renzi, A. Rhodes, J. Riccio, G. Rix, H-W Romelli, E. Roncarelli, M. Rosset, C. Rossetti, E. Saglia, R. Sapone, D. Sartoris, B. Schneider, P. Scodeggio, M. Secroun, A. Seidel, G. Sirignano, C. Sirri, G. Stanco, L. Tallada-Crespi, P. Tavagnacco, D. Taylor, A. N. Tereno, I. Toledo-Moreo, R. Torradeflot, F. Tutusaus, I. Valentijn, E. A. Valenziano, L. Vassallo, T. Wang, Y. Zacchei, A. Zamorani, G. Zoubian, J. Andreon, S. Bardelli, S. Boucaud, A. Colodro-Conde, C. Ferdinando, D. Di Gracia-Carpio, J. Lindholm, V. Maino, D. Mei, S. Scottez, V. Sureau, F. Tenti, M. Zucca, E. Borlaff, A. S. Ballardini, M. Biviano, A. Bozzo, E. Burigana, C. Cabanac, R. Cappi, A. Carvalho, C. S. Casas, S. Castignani, G. Cooray, A. Coupon, J. Courtois, H. M. Cuby, J. Davini, S. De Lucia, G. Desprez, G. Dole, H. Escartin, J. A. Escoffier, S. Farina, M. Fotopoulou, S. Ganga, K. Garcia-Bellid Univ Padua Dipartimento Fis & Astron G Galilei Via Marzolo 8 I-35131 Padua Italy INAF Osservatorio Astrofis & Sci Spazio Bologna Via Piero Gobetti 93-3 I-40129 Bologna Italy Univ Nottingham Sch Phys & Astron Univ Pk Nottingham NG7 2RD England Univ Manchester Dept Phys & Astron Jodrell Bank Ctr Astrophys Oxford Rd Manchester M13 9PL Lancs England Univ Ghent Sterrenkundig Observ Krijgslaan 281 S9 B-9000 Ghent Belgium INFN Sect Naples Via Cinthia 6 I-80126 Naples Italy INAF Osservatorio Astron Capodimonte Via Moiariello 16 I-80131 Naples Italy Univ Federico II Dept Phys E Pancini Via Cinthia 6 I-80126 Naples Italy Univ Porto Inst Astrofis & Ciencias Espaco CAUP Rua Estrelas P-4150762 Porto Portugal INAF Osservatorio Astrofis Arcetri Largo E Fermi 5 I-50125 Florence Italy Univ Portsmouth Inst Cosmol & Gravitat Portsmouth PO1 3FX Hants England Ist Nazl Astrofis INAF Osservatorio Astrofis & Sci Spazio OAS Via Gobetti 93-3 I-40127 Bologna Italy Univ Groningen Kapteyn Astron Inst POB 800 NL-9700 AV Groningen Netherlands Univ Paris Saclay CNRS Inst Astrophys Spatiale F-91405 Orsay France Univ Bologna Dipartimento Fis & Astron Via Gobetti 93-2 I-40129 Bologna Italy INFN Sez Bologna Viale Berti Pichat 6-2 I-40127 Bologna Italy Ludwig Maximilians Univ Munchen Fak Phys Univ Sternwarte Munchen Scheinerstr 1 D-81679 Munich Germany Max Planck Inst Extraterr Phys Giessenbachstr 1 D-85748 Garching Germany INAF Osservatorio Astrofis Torino Via Osservatorio 20 I-10025 Pino Torinese TO Italy Univ Genoa Dipartimento Fis INFN Sez Genova Via Dodecaneso 33 I-16146 Genoa Italy INFN Sez Roma Tre Via Vasca Navale 84 I-00146 Rome Italy Univ Torino Dipartimento Fis Via P Giuria 1 I-10125 Turin Italy INFN Sez Torino Via P Giuria 1 I-10125 Turin Italy INAF IASF Milano Via Alfonso Corti 12 I-20133 Milan Italy Barcelona Inst Sci & Technol Inst Fis Altes Energies IFAE Campus UAB Bellaterra 08193 Barcelona Spain Port Informacio Cient Campus UABC Albar
Next-generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine-learning methods are increasing... 详细信息
来源: 评论
The Pitfalls of Simplicity Bias in neural Networks  20
The Pitfalls of Simplicity Bias in Neural Networks
收藏 引用
Proceedings of the 34th International Conference on neural Information processing Systems
作者: Harshay Shah Kaustav Tamuly Aditi Raghunathan Prateek Jain Praneeth Netrapalli Microsoft Research Stanford University
Several works have proposed Simplicity Bias (SB)—the tendency of standard training procedures such as stochastic Gradient Descent (SGD) to find simple models—to justify why neural networks generalize well [1, 49, 74...
来源: 评论
State-of-the-Arts Person Re-Identification using Deep Learning  6
State-of-the-Arts Person Re-Identification using Deep Learni...
收藏 引用
6th International Conference on signal processing and Integrated Networks (SPIN)
作者: Jaiswal, Shradha Vishwakarma, Dinesh Kumar Delhi Technol Univ Dept Informat Technol Delhi India
Person Re-Identification has become prominent because of various reasons majorly due to its high-performance methods based on deep-learning. It is the process of person recognition from various images captured by diff... 详细信息
来源: 评论
Improving Alzheimer's stage categorization with Convolutional neural Network using transfer learning and different magnetic resonance imaging modalities
收藏 引用
HELIYON 2020年 第12期6卷 e05652页
作者: Aderghal, Karim Afdel, Karim Benois-Pineau, Jenny Catheline, Gwenaelle Univ Bordeaux CNRS Bordeaux INP LaBRIUMR 5800 F-33400 Talence France Ibn Zohr Univ Dept Comp Sci Fac Sci LabSIV Agadir Morocco Univ Bordeaux CNRS UMR 5287 Inst Neurosci Cognit & Integrat Aquitaine INCIA Bordeaux France
Background: Alzheimer's Disease (AD) is a neurodegenerative disease characterized by progressive loss of memory and general decline in cognitive functions. Multi-modal imaging such as structural MRI and DTI provid... 详细信息
来源: 评论
A Generalized stochastic Implementation of the Disparity Energy Model for Depth Perception
收藏 引用
JOURNAL OF signal processing SYSTEMS FOR signal image AND VIDEO TECHNOLOGY 2018年 第5期90卷 709-725页
作者: Boga, Kaushik Leduc-Primeau, Francois Onizawa, Naoya Matsumiya, Kazumichi Hanyu, Takahiro Gross, Warren J. McGill Univ Dept Elect & Comp Engn Montreal PQ Canada Tohuku Univ Sendai Miyagi Japan
Implementing neuromorphic algorithms is increasingly interesting as the error resilience and low-area, low-energy nature of biological systems becomes the potential solution for problems in robotics and artificial int... 详细信息
来源: 评论
On the vulnerability of deep learning to adversarial attacks for camera model identification
收藏 引用
signal processing-image COMMUNICATION 2018年 65卷 240-247页
作者: Marra, F. Gragnaniello, D. Verdoliva, L. Univ Federico II Naples Naples Italy
Camera model identification is a fundamental task for many investigative activities, and is drawing great attention in the research community. In this context, convolutional neural networks (CNN) are expected to provi... 详细信息
来源: 评论
Comparison of Facial Emotion Recognition Based on image Visual Features and EEG Features  4th
Comparison of Facial Emotion Recognition Based on Image Visu...
收藏 引用
4th International Conference on Cognitive Systems and Information processing (ICCSIP)
作者: Long, Yanfang Wanzeng, Kong B. Ling, Wenfen Yang, Can Zhu, Jieyong Hangzhou Dianzi Univ Hangzhou 310018 Zhejiang Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Automatic facial emotion recognition plays an important role in human-computer interaction. Although humans can recognize emotions with little or no effort, reliable emotion recognition by machines is always a challen... 详细信息
来源: 评论
stochastic Fusion for Multi-stream neural Network in Video Classification
Stochastic Fusion for Multi-stream Neural Network in Video C...
收藏 引用
Asia-Pacific signal and Information processing Association Annual Summit and Conference (APSIPA)
作者: Yu-Min Huang Huan-Hsin Tseng Jen-Tzung Chien National Chiao Tung University Hsinchu Taiwan Department of Radiation Oncology University of Michigan Ann Arbor MI USA
Spatial image and optical flow provide complementary information for video representation and classification. Traditional methods separately encode two stream signals and then fuse them at the end of streams. This pap... 详细信息
来源: 评论
Improvement of Edge-Tracking methods using Genetic Algorithm and neural Network
Improvement of Edge-Tracking Methods using Genetic Algorithm...
收藏 引用
International Conference of signal processing and Intelligent Systems (ICSPIS)
作者: Sajjad Ghazanfari Shabankareh Saeid Ghazanfari Shabankareh Faculty of Electrical Engineering Islamic Azad University Shiraz Iran Faculty of Science and Technology Aix-Marseille University Marseille France
One of the most basic and important operations in the field of image processing is image extraction and detection. Edge recognition is very important for image clarity and image segmentation. The importance of edge de... 详细信息
来源: 评论