咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 50 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 12 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 283 篇 理学
    • 224 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 8 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 59 篇 医学
    • 47 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 513 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是171-180 订阅
排序:
Hyperspectral image Classification With Markov Random Fields and a Convolutional neural Network
收藏 引用
IEEE TRANSACTIONS ON image processing 2018年 第5期27卷 2354-2367页
作者: Cao, Xiangyong Zhou, Feng Xu, Lin Meng, Deyu Xu, Zongben Paisley, John Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Shaanxi Peoples R China Xidian Univ Natl Lab Radar Signal Proc Xian 710071 Shaanxi Peoples R China NYU Multimedia & Visual Comp Lab Abu Dhabi 129188 U Arab Emirates Columbia Univ Dept Elect Engn New York NY 10027 USA Columbia Univ Data Sci Inst New York NY 10027 USA
This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HS... 详细信息
来源: 评论
Hyperparameter Optimization in Black-box image processing using Differentiable Proxies
收藏 引用
ACM TRANSACTIONS ON GRAPHICS 2019年 第4期38卷 27-27页
作者: Tseng, Ethan Yu, Felix Yang, Yuting Mannan, Fahim St Arnaud, Karl Nowrouzezahrai, Derek Lalonde, Jean-Francois Heide, Felix Princeton Univ Princeton NJ 08544 USA Algolux Montreal PQ Canada McGill Univ Montreal PQ Canada Univ Laval Quebec City PQ Canada
Nearly every commodity imaging system we directly interact with, or indirectly rely on, leverages power efficient, application-adjustable black-box hardware image signal processing (ISPs) units, running either in dedi... 详细信息
来源: 评论
Exposing computer generated images by using deep convolutional neural networks
收藏 引用
signal processing-image COMMUNICATION 2018年 66卷 113-126页
作者: de Rezende, Edmar R. S. Ruppert, Guilherme C. S. Theophilo, Antonio Tokuda, Eric K. Carvalho, Tiago CTI Renato Archer BR-13069901 Campinas SP Brazil Fed Inst Sao Paulo BR-13069901 Campinas SP Brazil Univ Sao Paulo BR-05008090 Sao Paulo SP Brazil
The recent computer graphics developments have upraised the quality of the generated digital content, astonishing the most skeptical viewer. Games and movies have taken advantage of this fact but, at the same time, th... 详细信息
来源: 评论
Uses of Complex Wavelets in Deep Convolutional neural Networks
Uses of Complex Wavelets in Deep Convolutional Neural Networ...
收藏 引用
作者: Cotter,Fergal Cambridge University
image understanding has long been a goal for computer vision. It has proved to be an exceptionally difficult task due to the large amounts of variability that are inherent to objects in a scene. Recent advances in sup...
来源: 评论
Improved Protein Residue-Residue Contact Prediction Using image Denoising methods  26
Improved Protein Residue-Residue Contact Prediction Using Im...
收藏 引用
European signal processing Conference (EUSIPCO)
作者: Villegas-Morcillo, Amelia Morales-Cordovilla, Juan A. Gomez, Angel M. Sanchez, Victoria Univ Granada Dept Signal Theory Telemat & Commun Granada Spain
A protein contact map is a simplified matrix representation of the protein structure, where the spatial proximity of two amino acid residues is reflected. Although the accurate prediction of protein inter-residue cont... 详细信息
来源: 评论
Deep Learning Utilization in Beamforming Enhancement for Medical Ultrasound
Deep Learning Utilization in Beamforming Enhancement for Med...
收藏 引用
IEEE Annual International Computer Software and Applications Conference (COMPSAC)
作者: Mariam Fouad Yousef Metwally Georg Schmitz Michael Huebner Mohamed A. Abd El Ghany Ruhr University Bochym (RUB) Germany and German University in Cairo (GUC) Egypt German University in Cairo (GUC) Egypt Ruhr University Bochum (RUB) Germany BTU Cottbus - Senftenberg Germany German University in Cairo (GUC) Egypt and TU Darmstadt (TUD) Germany
Ultrasound imaging offers a low cost, noninvasive and portable system, which allowed it to be an invaluable tool for medical imaging. However, the quality of the reconstructed images depends significantly on the beamf... 详细信息
来源: 评论
Deep Learning for Passive Synthetic Aperture Radar
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN signal processing 2018年 第1期12卷 90-103页
作者: Yonel, Bariscan Mason, Eric Yazici, Birsen Rensselaer Polytech Inst Dept Elect Comp & Syst Engn Troy NY 12180 USA
We introduce a deep learning (DL) framework for inverse problems in imaging, and demonstrate the advantages and applicability of this approach in passive synthetic aperture radar (SAR) image reconstruction. We interpr... 详细信息
来源: 评论
A Comparative study of Global and Deep Features for the analysis of user-generated natural disaster related images  13
A Comparative study of Global and Deep Features for the anal...
收藏 引用
13th IEEE image, Video, and Multidimensional signal processing Workshop (IVMSP)
作者: Ahmad, Kashif Sohail, Amir Conci, Nicola De Natale, Francesco Univ Trento Trento Italy
The paper addresses the problem of adverse events (natural disasters) recognition in user-generated images from social media, addressing the problem from two complementary perspectives. On one side, we aim to provide ... 详细信息
来源: 评论
Analysis of Adversarial Attacks against CNN-based image Forgery Detectors  26
Analysis of Adversarial Attacks against CNN-based Image Forg...
收藏 引用
26th European signal processing Conference (EUSIPCO)
作者: Gragnaniello, Diego Marra, Francesco Poggi, Giovanni Verdoliva, Luisa Univ Federico II Naples Dept Elect Engn & Informat Technol Naples Italy
With the ubiquitous diffusion of social networks, images are becoming a dominant and powerful communication channel. Not surprisingly, they are also increasingly subject to manipulations aimed at distorting informatio... 详细信息
来源: 评论
Soft Dropout And Its Variational Bayes Approximation
Soft Dropout And Its Variational Bayes Approximation
收藏 引用
IEEE Workshop on Machine Learning for signal processing
作者: Jiyang Xie Zhanyu Ma Guoqiang Zhang Jing-Hao Xue Zheng-Hua Tan Jun Guo Pattern Recognition and Intelligent Systems Lab Beijing University of Posts and Telecommunications China School of Electrical and Data Engineering University of Technology Sydney Australia Department of Statistical Science University College London United Kingdom Department of Electronic Systems Aalborg University Denmark
Soft dropout, a generalization of standard “hard” dropout, is introduced to regularize the parameters in neural networks and prevent overfitting. We replace the “hard” dropout mask following a Bernoulli distributi... 详细信息
来源: 评论