咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 50 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 12 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 283 篇 理学
    • 224 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 8 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 59 篇 医学
    • 47 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 513 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是191-200 订阅
排序:
MAP Tomographic Reconstruction with a Spatially Adaptive Hierarchical image Model  25
MAP Tomographic Reconstruction with a Spatially Adaptive Hie...
收藏 引用
25th European signal processing Conference (EUSIPCO)
作者: Nikou, Christophoros Univ Ioannina Dept Comp Sci & Engn Ioannina Greece
A method for penalized likelihood tomographic reconstruction is presented which is based on a spatially adaptive stochastic image model. The model imposes onto the image a smoothing Gaussian prior whose parameters fol... 详细信息
来源: 评论
Saccade gaze prediction using a recurrent neural network  24
Saccade gaze prediction using a recurrent neural network
收藏 引用
24th IEEE International Conference on image processing, ICIP 2017
作者: Ngo, Thuyen Manjunath, B.S. Department of Electrical and Computer Engineering University of California Santa Barbara United States
We present a model that generates close-to-human gaze sequences for a given image in the free viewing task. The proposed approach leverages recent advances in image recognition using convolutional neural networks and ... 详细信息
来源: 评论
CLUSTER CONVOLUTIONAL neural NETWORKS FOR FACIAL AGE ESTIMATION  24
CLUSTER CONVOLUTIONAL NEURAL NETWORKS FOR FACIAL AGE ESTIMAT...
收藏 引用
24th IEEE International Conference on image processing (ICIP)
作者: Shang, Chong Ai, Haizhou Tsinghua Univ Dept Comp Sci & Tech Tsinghua Natl Lab Info Sci & Tech Beijing Peoples R China
In computer vision tasks, such as age estimation problem, a typical deep learning model is insufficient to represent all the transformations between data and their labels. In this paper, we present a novel deep neural... 详细信息
来源: 评论
A Feature Learning Approach for image Retrieval  24th
A Feature Learning Approach for Image Retrieval
收藏 引用
24th International Conference on neural Information processing (ICONIP)
作者: Yao, Junfeng Yu, Yao Deng, Yukai Sun, Changyin Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Southeast Univ Sch Automat Naijing 210096 Peoples R China
Extraction of effective image features is the key to the content-based image retrieval task. Recently, deep convolutional neural networks have been widely used in learning image features and have achieved top results.... 详细信息
来源: 评论
A DEEP LEARNING BASED ALTERNATIVE TO BEAMFORMING ULTRASOUND imageS
A DEEP LEARNING BASED ALTERNATIVE TO BEAMFORMING ULTRASOUND ...
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Arun Asokan Nair Trac D. Tran Austin Reiter Muyinatu A. Lediju Bell Department of Electrical and Computer Engineering Johns Hopkins University Baltimore USA Department of Computer Science Johns Hopkins University Baltimore USA
Deep learning methods are capable of performing sophisticated tasks when applied to a myriad of artificial intelligent (AI) research fields. In this paper, we introduce a novel approach to replace the inherently flawe... 详细信息
来源: 评论
FACE ANTI-SPOOFING VIA DEEP LOCAL BINARY PATTERNS  24
FACE ANTI-SPOOFING VIA DEEP LOCAL BINARY PATTERNS
收藏 引用
24th IEEE International Conference on image processing (ICIP)
作者: Li, Lei Feng, Xiaoyi Jiang, Xiaoyue Xia, Zhaoqiang Hadid, Abdenour Northwestern Polytech Univ Xian Shaanxi Peoples R China Univ Oulu Ctr Machine Vis & Signal Anal Oulu Finland
Convolutional neural networks (CNNs) have achieved excellent performance in the field of pattern recognition when huge amount of training data is available. However, training a CNN model is less obvious when only a li... 详细信息
来源: 评论
Deep Learning for SAR image Formation  24
Deep Learning for SAR Image Formation
收藏 引用
Conference on Algorithms for Synthetic Aperture Radar imagery XXIV
作者: Mason, Eric Yonel, Bariscan Yazici, Birsen Rensselaer Polytech Inst Dept Elect Comp & Syst Engn Troy NY 12180 USA
The recent success of deep learning has lead to growing interest in applying these methods to signal processing problems. This paper explores the applications of deep learning to synthetic aperture radar (SAR) image f... 详细信息
来源: 评论
CAN MICRO-EXPRESSION BE RECOGNIZED BASED ON SINGLE APEX FRAME?
CAN MICRO-EXPRESSION BE RECOGNIZED BASED ON SINGLE APEX FRAM...
收藏 引用
IEEE International Conference on image processing
作者: Yante Li Xiaohua Huang Guoying Zhao Center for Machine Vision and Signal Analysis University of Oulu
Micro-expressions are rapid and subtle facial movements such that they are difficult to detect and recognize. Most of recent works have attempted to recognize micro-expression by using the spatial and dynamic informat... 详细信息
来源: 评论
A Fully Convolutional neural Network for Beamforming Ultrasound images
A Fully Convolutional Neural Network for Beamforming Ultraso...
收藏 引用
IEEE International Ultrasonics Symposium
作者: Arun Asokan Nair Mardava Rajugopal Gubbi Trac Duy Tran Austin Reiter Muyinatu A. Lediju Bell Department of Electrical and Computer Engineering Johns Hopkins University Baltimore MD Department of Computer Science Johns Hopkins University Baltimore MD Department of Biomedical Engineering Johns Hopkins University Baltimore MD
Plane wave ultrasound imaging is one of the fastest ultrasound methods available to reduce latency for ultrasound-based robotic tracking tasks. However, the presence of acoustic clutter and speckle in the images can c... 详细信息
来源: 评论
Use of OWA Operators for Feature Aggregation in image Classification
Use of OWA Operators for Feature Aggregation in Image Classi...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
作者: Pagola, Miguel Forcen, Juan I. Barrenechea, Edurne Lopez-Molina, Carlos Bustince, Humberto Univ Publ Navarra Inst Smart Cities Pamplona 31006 Spain
Feature aggregation is a crucial step in many methods of image classification, like the Bag-of-Words (BoW) model or the Convolutional neural Networks (CNN). In this aggregation step, usually known as spatial pooling, ... 详细信息
来源: 评论