咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 50 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 12 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 283 篇 理学
    • 224 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 8 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 59 篇 医学
    • 47 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 513 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是201-210 订阅
排序:
Intelligent Computing, Networked Control, and Their Engineering Applications  1st ed. 2017
收藏 引用
丛书名: Communications in Computer and Information Science
2017年
作者: Dong Yue Chen Peng Dajun Du Tengfei Zhang Min Zheng Qinglong Han
The three-volume set CCIS 761, CCIS 762, and CCIS 763 constitutes the thoroughly refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2017, and of the International Confere...
来源: 评论
MAP Tomographic Reconstruction with a Spatially Adaptive Hierarchical image Model
MAP Tomographic Reconstruction with a Spatially Adaptive Hie...
收藏 引用
European signal processing Conference
作者: Christophoros Nikou Department of Computer Science and Engineering University of Ioannina Greece
A method for penalized likelihood tomographic reconstruction is presented which is based on a spatially adaptive stochastic image model. The model imposes onto the image a smoothing Gaussian prior whose parameters fol... 详细信息
来源: 评论
DEEP DISCRIMINATIVE MANIFOLD LEARNING  41
DEEP DISCRIMINATIVE MANIFOLD LEARNING
收藏 引用
41st IEEE International Conference on Acoustics, Speech and signal processing (ICASSP)
作者: Chien, Jen-Tzung Chen, Ching-Huai Natl Chiao Tung Univ Dept Elect & Comp Engn Hsinchu 30010 Taiwan
This paper presents a new non-linear dimensionality reduction with stochastic neighbor embedding. A deep neural network is developed for discriminative manifold learning where the class information in transformed low-... 详细信息
来源: 评论
Hyperspectral image Classification with Markov Random Fields and a Convolutional neural Network
arXiv
收藏 引用
arXiv 2017年
作者: Cao, Xiangyong Zhou, Feng Xu, Lin Meng, Deyu Xu, Zongben Paisley, John IEEE IEEE School of Mathematics and Statistics Xi’an Jiaotong University Xi’an710049 China National Laboratory of Radar Signal Processing Xidian University Xi’an China NYU Multimedia and Visual Computing Lab New York University Abu Dhabi United Arab Emirates Department of Electrical Engineering & Data Science Institute Columbia University New YorkNY United States Columbia University China Scholarship Council
This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HS... 详细信息
来源: 评论
DEEP STACKING NETWORK WITH COARSE FEATURES FOR HYPERSPECTRAL image CLASSIFICATION  8
DEEP STACKING NETWORK WITH COARSE FEATURES FOR HYPERSPECTRAL...
收藏 引用
8th Workshop on Hyperspectral image and signal processing - Evolution in Remote Sensing (WHISPERS)
作者: He, Mingyi Li, Xiaohui Northwestern Polytech Univ Earth Observat Ctr Sch Elect & Informat Shaanxi Key Lab Informat Acquisit & Proc Xian 710129 Shaanxi Peoples R China
Hyperspectral image (HSI) classification attracts increasing attentions in remote sensing community for its academic significance and potential wide applications. Although most of used existing "intelligent"... 详细信息
来源: 评论
Extracting Region of Interest for Palmprint by Convolutional neural Networks  6
Extracting Region of Interest for Palmprint by Convolutional...
收藏 引用
6th International Conference on image processing Theory, Tools and Applications (IPTA)
作者: Bao, Xianjie Guo, Zhenhua Tsinghua Univ Grad Sch Shenzhen Shenzhen Peoples R China
Palm ROI extraction is one of the most important processes in palmprint recognition. The core idea is to employ the valley points between the fingers to establish a coordinate system and then obtain the ROI of palmpri... 详细信息
来源: 评论
Biometric spoofing detection by a Domain-aware Convolutional neural Network  12
Biometric spoofing detection by a Domain-aware Convolutional...
收藏 引用
12th International Conference on signal-image Technology and Internet-Based Systems (SITIS)
作者: Gragnaniello, Diego Poggi, Giovanni Sansone, Carlo Verdoliva, Luisa CNR Natl Res Council Italy ICAR Inst High Performance Comp & Networking Naples Italy Univ Federico Naples II DIETI Naples Italy
Biometric authentication systems are pervasive in modern society, but they are quite vulnerable to spoofing attacks. Research on spoofing (or liveness) detection is therefore very active. A number of methods have been... 详细信息
来源: 评论
Classification of Cervical Cancer using Artificial neural Networks  12
Classification of Cervical Cancer using Artificial Neural Ne...
收藏 引用
12th International Conference on Communication Networks (ICCN) / 12th International Conference on Data Mining and Warehousing (ICDMW) / 12th International Conference on image and signal processing (ICISP)
作者: Devi, M. Anousouya Ravi, S. Vaishnavi, J. Punitha, S. Pondicherry Univ Sch Engn & Technol Pondicherry India
Artificial neural network (ANN) plays an important role in many medical imaging applications. The detection of cervical cancer cells uses an ANN for classifying the normal and abnormal cells in the cervix region of th... 详细信息
来源: 评论
image Fusion and Super-Resolution with Convolutional neural Network
Image Fusion and Super-Resolution with Convolutional Neural ...
收藏 引用
7th Chinese Conference on Pattern Recognition (CCPR)
作者: Zhong, Jinying Yang, Bin Li, Yuehua Zhong, Fei Chen, Zhongze Univ South China Sch Elect Engn Hengyang 421001 Peoples R China
image fusion aims to integrate multiple images of the same scene into an artificial image which contains more useful information than any individual one. Due to the constraints of imaging sensors and signal transmissi... 详细信息
来源: 评论
Integration of Unsupervised and Supervised Criteria for Deep neural Networks Training  25th
Integration of Unsupervised and Supervised Criteria for Deep...
收藏 引用
25th International Conference on Artificial neural Networks (ICANN)
作者: Zamora-Martinez, Francisco Munoz-Almaraz, Javier Pardo, Juan Univ CEU Cardenal Herrera Dept Ciencias Fis Matemat & Comp Valencia 46115 Spain
Training Deep neural Networks has been a difficult task for a long time. Recently diverse approaches have been presented to tackle these difficulties, showing that deep models improve the performance of shallow ones i... 详细信息
来源: 评论