咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 51 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 11 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 282 篇 理学
    • 223 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 7 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 58 篇 医学
    • 46 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 4 篇 特种医学
    • 4 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 514 篇 英文
  • 20 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是331-340 订阅
排序:
Revisiting Boltzmann learning: parameter estimation in Markov random fields
Revisiting Boltzmann learning: parameter estimation in Marko...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: L.K. Hansen L.N. Andersen U. Kjems J. Larsen Electron. Inst. Tech. Univ. Lyngby Denmark CONNECT Electronics Institute Technical University of Denmark Lyngby Denmark Danmarks Tekniske Universitet Lyngby DK
This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and uns... 详细信息
来源: 评论
On globally asymptotically stable continuous-time CNNs for adaptive smoothing of multidimensional signals
On globally asymptotically stable continuous-time CNNs for a...
收藏 引用
IEEE International Workshop on Cellular Nanoscale Networks and their Applications, (CNNA)
作者: C. Schnorr H.S. Stiehl R.-R. Grigat FB Informatik Universit#x00E4 t Hamburg Hamburg Germany AB Technische Technische Informatik Technical University Hamburg-Harburg Hamburg Germany
We present a theoretical framework from which an approach to nonlinear, locally-adaptive smoothing of multi-dimensional signals has been derived which exhibits properties favourable to any application: unique solution... 详细信息
来源: 评论
neural, Morphological, and stochastic methods in image and signal processing
Neural, Morphological, and Stochastic Methods in Image and S...
收藏 引用
neural, Morphological, and stochastic methods in image and signal processing 1995
The proceedings contain 30 papers. The topics discussed include: hierarchical markov random field models applied to image analysis: a review;multiresolution Markov random field and multigrid algorithm for a discontinu...
来源: 评论
Mathematical morphology and higher-order neural networks
Mathematical morphology and higher-order neural networks
收藏 引用
Conference on neural, Morphological, and stochastic methods in image and signal processing
作者: SKONECZNY, S SZOSTAKOWSKI, J STAJNIAK, A ZYDANOWICZ, W WARSAW UNIV TECHNOL INST CONTROL & IND ELECTRPL-00662 WARSAWPOLAND
Mathematical morphology (MM) is one of the most efficient tools in advanced digital image processing. Morphological techniques have been successfully applied in such cases as: image analysis, smoothing, enhancement, e... 详细信息
来源: 评论
Tiling and demand driven evaluation for picture processing
Tiling and demand driven evaluation for picture processing
收藏 引用
Conference on neural, Morphological, and stochastic methods in image and signal processing
作者: HORAIN, P DOGARU, V ECOLE NATL SUPER TELECOMMUN BRETAGNE DEPT IMAGESF-75634 PARIS 13FRANCE
We propose a software architecture for picture processing that allows efficient memory management when algorithms with many operators are applied to large images, and that allows automated parallelization. This archit... 详细信息
来源: 评论
A neural network architecture for fault-diagnosis of digital circuits
A neural network architecture for fault-diagnosis of digital...
收藏 引用
Conference on neural, Morphological, and stochastic methods in image and signal processing
作者: BARUA, S CALIF STATE UNIV FULLERTON DEPT ELECT ENGNFULLERTONCA 92634
A neural network architecture that is capable of assisting as well as providing valuable information in diagnosing faults in digital circuits is presented here. Once a digital circuit has been constructed, it is requi... 详细信息
来源: 评论
Convergence of unsupervised image segmentation algorithms
Convergence of unsupervised image segmentation algorithms
收藏 引用
Conference on neural, Morphological, and stochastic methods in image and signal processing
作者: WON, CS DONGGUK UNIV DEPT ELECTR ENGNSEOUL 100715SOUTH KOREA
This paper presents a comparative study of three deterministic unsupervised image segmentation algorithms. All of the three algorithms basically make use of a Markov random field (MRF) and try to obtain an approximate... 详细信息
来源: 评论
Computational representation of increasing lattice-valued image operators
Computational representation of increasing lattice-valued im...
收藏 引用
Conference on neural, Morphological, and stochastic methods in image and signal processing
作者: SINHA, D DOUGHERTY, ER CUNY COLL STATEN ISL NEW YORKNY
Computational mathematical morphology provides zeta-function-based representation for windowed, translation-invariant image operators taking their values in a complete lattice. image operators are induced via windowin... 详细信息
来源: 评论
neural networks with cellular atrophy for geometric data baseclassifications
Neural networks with cellular atrophy for geometric data bas...
收藏 引用
Conference on neural, Morphological, and stochastic methods in image and signal processing
作者: ALI, DL UNIV SO MISSISSIPPI DEPT COMP SCIHATTIESBURGMS 39406
In this paper we examine the use of geometric modeling in grouping and classification. A neural network approach is suggested to combine the completeness of information provided by a geometric modeler with the uncerta... 详细信息
来源: 评论
HIERARCHICAL MARKOV RANDOM-FIELD MODELS APPLIED TO image-ANALYSIS - A REVIEW
HIERARCHICAL MARKOV RANDOM-FIELD MODELS APPLIED TO IMAGE-ANA...
收藏 引用
Conference on neural, Morphological, and stochastic methods in image and signal processing
作者: GRAFFIGNE, C HEITZ, F PEREZ, P PRETEUX, F SIGELLE, M ZERUBIA, J UNIV PARIS 05 F-75270 PARIS 06 FRANCE
The need for hierarchical statistical tools for modeling and processing image data, as well as the success of Markov random fields (MRFs) in image processing, have recently given rise to a significant research activit... 详细信息
来源: 评论