咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 50 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 12 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 283 篇 理学
    • 224 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 8 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 59 篇 医学
    • 47 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 513 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是51-60 订阅
排序:
MAP image Recovery with Guarantees using Locally Convex Multi-Scale Energy (LC-MUSE) Model
MAP Image Recovery with Guarantees using Locally Convex Mult...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Jyothi Rikhab Chand Mathews Jacob Department of Electrical and Computer Engineering University of Iowa IA USA Department of Electrical and Computer Engineering University of Virginia VA USA
We propose a multi-scale deep energy model that is strongly convex in the local neighbourhood around the data manifold to represent its probability density, with application in inverse problems. In particular, we repr... 详细信息
来源: 评论
PID Controller-Inspired Model Design for Single image De-Raining
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS ii-EXPRESS BRIEFS 2022年 第4期69卷 2351-2355页
作者: Zhou, Man Wang, Fan Wei, Xian Wang, Rujing Wang, Xue Chinese Acad Sci Inst Intelligent Machines Intelligent Agr Engn Lab Anhui Prov Hefei 230031 Peoples R China Chinese Acad Sci Hefei Inst Phys Sci Hefei 230031 Peoples R China Univ Sci & Technol China Hefei 230026 Peoples R China East China Normal Univ MOE Engn Res Ctr Software & Hardware Codesign & A Shanghai 200062 Peoples R China
Deep learning based methods have achieved remarkable breakthroughs on the single image de-raining task. However, most of the current models are constructed by empirically designing black-box network architectures. The... 详细信息
来源: 评论
Deep Learning and image Super-Resolution-Guided Beam and Power Allocation for mmWave Networks
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2023年 第11期72卷 15080-15085页
作者: Cao, Yuwen Ohtsuki, Tomoaki Maghsudi, Setareh Quek, Tony Q. S. Donghua Univ Shanghai 201620 Peoples R China Northwestern Polytech Univ Xian 710072 Peoples R China Keio Univ Yokohama 2238522 Japan Univ Tubingen D-72074 Tubingen Germany Fraunhofer Heinrich Hertz Inst D-10587 Berlin Germany Singapore Univ Technol & Design Singapore 487372 Singapore Yonsei Univ Yonsei Frontier Lab Seoul 03722 South Korea
In this article, we develop a deep learning (DL)-guided hybrid beam and power allocation approach for multiuser millimeter-wave (mmWave) networks, which facilitates swift beamforming at the base station (BS). The foll... 详细信息
来源: 评论
stochastic Optimization of Vector Quantization methods in Application to Speech and image processing
Stochastic Optimization of Vector Quantization Methods in Ap...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Mohammad Hassan Vali Tom Bäckström Department of Signal Processing and Acoustics Aalto University Finland
Vector quantization (VQ) methods have been used in a wide range of applications for speech, image, and video data. While classic VQ methods often use expectation maximization, in this paper, we investigate the use of ... 详细信息
来源: 评论
A stochastic approach for automated brain MRI segmentation
收藏 引用
IET image processing 2021年 第3期15卷 735-745页
作者: Chatterjee, Pubali Sharma, Kaushik Das Chakrabarti, Amlan Univ Calcutta AK Choudhury Sch Informat Technol Kolkata W Bengal India Univ Calcutta Dept Appl Phys Kolkata W Bengal India
This paper presents an approach to segment lesions from brain magnetic resonance images in a fully automatic manner. The proposed idea leverages the strength of classical random walker algorithm and graph cut optimiza... 详细信息
来源: 评论
LOCALLY OPTIMAL DETECTION OF stochastic TARGETED UNIVERSAL ADVERSARIAL PERTURBATIONS
LOCALLY OPTIMAL DETECTION OF STOCHASTIC TARGETED UNIVERSAL A...
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing (ICASSP)
作者: Goel, Amish Moulin, Pierre Univ Illinois Dept Elect & Comp Engn Urbana IL 61801 USA
Deep learning image classifiers are known to be vulnerable to small adversarial perturbations of input images. In this paper, we derive the locally optimal generalized likelihood ratio test based detector for detectin... 详细信息
来源: 评论
Performance Analysis of First Order Optimizers for Plant Pest Detection Using Deep Learning  4th
Performance Analysis of First Order Optimizers for Plant Pes...
收藏 引用
4th International Conference on Machine Learning, image processing, Network Security and Data Sciences (MIND)
作者: Saranya, T. Deisy, C. Sridevi, S. Muthu, Kalaiarasi Sonai Khan, M. K. A. Ahamed Thiagarajar Coll Engn Madurai Tamil Nadu India Multimedia Univ Melaka Malaysia UCSI Univ Kuala Lumpur Malaysia
Several of the major issues affecting food productivity are a pest. The timely and precise detection of plant pests is crucial for avoiding the loss of agricultural productivity. Only by detecting the pest at an early... 详细信息
来源: 评论
Deep Sub-image Sampling Based Defense Against Spatial-Domain Adversarial Steganography
Deep Sub-Image Sampling Based Defense Against Spatial-Domain...
收藏 引用
Acoustics, Speech, and signal processing Workshops (ICASSPW), IEEE International Conference on
作者: Xinyu Huang Yuwen Cao Tomoaki Ohtsuki School of Cybersecurity Northwestern Polytechnical University Xi’an China College of Information Science and Technology Donghua University China Department of Information and Computer Science Keio University Japan
Deep steganalyzer combined with neural networks has achieved great success in image classification over recent years. However, it suffers from the following persistent challenges: i) Deep steganalyzer is extremely vul... 详细信息
来源: 评论
Comprehensive Electric load forecasting using ensemble machine learning methods  29
Comprehensive Electric load forecasting using ensemble machi...
收藏 引用
29th International Conference on Systems, signals and image processing (IWSSIP)
作者: Bhatnagar, Mansi Dwivedi, Vivek Singh, Divyanshu Rozinaj, Gregor Slovak Univ Technol FEI Dept Multimedia & Telecommun Bratislava Slovakia Blue Bricks Pvt Ltd AI ML Developer Lucknow India
The accuracy of electric load forecasting is crucial when working on applications in power grid decision-making and operation. Due to the non-linear and stochastic behaviour of customers, the electric load profile is ... 详细信息
来源: 评论
Local signal Adaptivity: Provable Feature Learning in neural Networks Beyond Kernels  35
Local Signal Adaptivity: Provable Feature Learning in Neural...
收藏 引用
35th Annual Conference on neural Information processing Systems (NeurIPS)
作者: Karp, Stefani Winston, Ezra Li, Yuanzhi Singh, Aarti Carnegie Mellon Univ Pittsburgh PA 15213 USA Google Res Mountain View CA 94043 USA
neural networks have been shown to outperform kernel methods in practice (including neural tangent kernels). Most theoretical explanations of this performance gap focus on learning a complex hypothesis class;in some c... 详细信息
来源: 评论