咨询与建议

限定检索结果

文献类型

  • 406 篇 会议
  • 121 篇 期刊文献
  • 10 册 图书
  • 3 篇 学位论文

馆藏范围

  • 540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 365 篇 工学
    • 206 篇 计算机科学与技术...
    • 202 篇 电气工程
    • 107 篇 软件工程
    • 50 篇 光学工程
    • 48 篇 信息与通信工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 控制科学与工程
    • 20 篇 生物医学工程(可授...
    • 12 篇 仪器科学与技术
    • 12 篇 生物工程
    • 10 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 测绘科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 航空宇航科学与技...
  • 283 篇 理学
    • 224 篇 物理学
    • 123 篇 数学
    • 24 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 13 篇 系统科学
    • 8 篇 化学
    • 6 篇 天文学
    • 5 篇 地球物理学
  • 59 篇 医学
    • 47 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 5 篇 医学技术(可授医学...
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 103 篇 neural networks
  • 85 篇 stochastic proce...
  • 79 篇 image processing
  • 69 篇 signal processin...
  • 38 篇 machine vision
  • 36 篇 deep learning
  • 33 篇 computer vision ...
  • 32 篇 image segmentati...
  • 25 篇 feature extracti...
  • 23 篇 neurons
  • 21 篇 image analysis
  • 20 篇 image reconstruc...
  • 19 篇 image classifica...
  • 19 篇 training
  • 19 篇 convolutional ne...
  • 18 篇 machine learning
  • 14 篇 statistical anal...
  • 13 篇 image coding
  • 13 篇 visual process m...
  • 13 篇 neural network

机构

  • 4 篇 purdue univ.
  • 3 篇 north carolina s...
  • 3 篇 univ oulu ctr ma...
  • 3 篇 massachusetts in...
  • 2 篇 google res mount...
  • 2 篇 carnegie mellon ...
  • 2 篇 univ so calif de...
  • 2 篇 northwestern pol...
  • 2 篇 national chiao t...
  • 2 篇 inst. de pesquis...
  • 2 篇 rensselaer polyt...
  • 2 篇 univ. of nebrask...
  • 2 篇 univ zurich inst...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 nanyang technolo...
  • 2 篇 syracuse univ.
  • 2 篇 school of electr...
  • 2 篇 north carolina s...
  • 2 篇 univ trento tren...

作者

  • 3 篇 bilbro griff l.
  • 3 篇 rigoll g
  • 3 篇 mcdonnell jr
  • 3 篇 preteux f
  • 3 篇 waagen de
  • 2 篇 wolff daniel
  • 2 篇 jentzen arnulf
  • 2 篇 oweiss kg
  • 2 篇 zhu qiuming
  • 2 篇 yazici birsen
  • 2 篇 wang sheng
  • 2 篇 fei manman
  • 2 篇 payne matt g.
  • 2 篇 liu y
  • 2 篇 sher david b.
  • 2 篇 jen-tzung chien
  • 2 篇 chen dongdong
  • 2 篇 liu jun
  • 2 篇 mesinger andrei
  • 2 篇 waagen don e.

语言

  • 513 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"任意字段=Neural and Stochastic Methods in Image and Signal Processing II"
540 条 记 录,以下是71-80 订阅
排序:
image Restoration of Landslide Photographs Using SRCNN  3rd
Image Restoration of Landslide Photographs Using SRCNN
收藏 引用
3rd International Conference on VLSI, Communication and signal processing, VCAS 2020
作者: Mohan, Amrita Dwivedi, Ramji Kumar, Basant MNNIT Allahabad Uttar Pradesh Prayagraj India
In the proposed work, a CNN-based Super-Resolution Convolutional neural Network (SRCNN) framework for landslide photographs is used for resolution improvement. SRCNN method is based on a deep convolutional neural netw... 详细信息
来源: 评论
Recognition of Radar Emitter signal images Using encoding signal methods
Recognition of Radar Emitter Signal Images Using encoding si...
收藏 引用
International Conference on neural Networks, Information and Communication Engineering
作者: Zhang, Shengli Pan, Jifei Han, Zhenzhong Qiu, Risheng Natl Univ Def Technol Elect Countermeasure Inst Hefei 230037 Anhui Peoples R China
We innovatively apply three different methods of encoding signal as 2-D plots to radar emitter signal recognition: Recurrence Plots (RP). Gramian Angular Field (GAF) and Markov Transition Field (MTF), thus the radar e... 详细信息
来源: 评论
Deep neural Network Models Trained with a Fixed Random Classifier Transfer Better Across Domains
Deep Neural Network Models Trained with a Fixed Random Class...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Hafiz Tiomoko Ali Umberto Michieli Ji Joong Moon Daehyun Kim Mete Ozay Samsung Research UK Samsung Research Korea
The recently discovered neural collapse (NC) phenomenon states that the last-layer weights of Deep neural Networks (DNN), converge to the so-called Equiangular Tight Frame (ETF) simplex, at the terminal phase of their...
来源: 评论
Micro-Expression Recognition Method Based on Dual-Stream Network and Fused Differential
Micro-Expression Recognition Method Based on Dual-Stream Net...
收藏 引用
IEEE International Conference on signal and image processing (ICSIP)
作者: Shicheng Lu Runcai Huang Shanghai University of Engineering Science Shanghai China
Micro-expressions have the characteristics of short duration and low range of motion, making them difficult to recognize with the naked eye. Traditional networks only focus on image features and do not learn informati... 详细信息
来源: 评论
Model Based and Physics Informed Deep Learning neural Network Structures
arXiv
收藏 引用
arXiv 2024年
作者: Mohammad-Djafari, Ali Chu, Ning Wang, Li Cai, Caifang Yu, Liang Bures sur Yvette91440 France Zhejiang Shangfeng special blower company Shaoxing312352 China Central South University Changsha China Khalifa University Abu Dhabi United Arab Emirates School of Civil Aviation Northwestern Polytechnical Univ. Xian710072 China State Key Laboratory of Airliner Integration Technology and Flight Simulation Shanghai200126 China
neural Networks (NN) has been used in many areas with great success. When a NN’s structure (Model) is given, during the training steps, the parameters of the model are determined using an appropriate criterion and an... 详细信息
来源: 评论
ADVERSARIAL TRAINING WITH stochastic WEIGHT AVERAGE
ADVERSARIAL TRAINING WITH STOCHASTIC WEIGHT AVERAGE
收藏 引用
IEEE International Conference on image processing (ICIP)
作者: Hwang, Joong-won Lee, Youngwan Oh, Sungchan Bae, Yuseok Elect & Telecommun Res Inst Daejeon South Korea
Although adversarial training is the most reliable method to train robust deep neural networks so far, adversarially trained networks still show large gap between their accuracies on clean images and those on adversar... 详细信息
来源: 评论
Source localization in resource-constrained sensor networks based on deep learning
收藏 引用
neural COMPUTING & APPLICATIONS 2021年 第9期33卷 4217-4228页
作者: Javadi, S. Hamed Guerrero, Angela Mouazen, Abdul M. Univ Ghent Fac Biosci Engn Dept Environm B-9000 Ghent Belgium
Source localization with a network of low-cost motes with limited processing, memory, and energy resources is considered in this paper. The state-of-the-art methods are mostly based on complicated signal processing ap... 详细信息
来源: 评论
Correction of geometric artifact in cone-beam computed tomography through a deep neural network
收藏 引用
APPLIED OPTICS 2021年 第7期60卷 1843-1850页
作者: Xiao, Kai Yan, Bin Natl Key Lab Sci & Technol Blind Signal Proc Chengdu 610000 Peoples R China Natl Digital Switching Syst Engn & Technol Res Ct Zhengzhou 450001 Peoples R China
Cone-beam computed tomography is a noninvasive detection system that can obtain the three-dimensional structure of objects in a way that does not damage the object. It is widely applied in precision instruments, medic... 详细信息
来源: 评论
Bio-medical image Denoising using Autoencoders  2
Bio-medical Image Denoising using Autoencoders
收藏 引用
2nd International Conference on Next Generation Intelligent Systems, ICNGIS 2022
作者: Thomas, Jintu Merin Ameenudeen, P.E. Electronics and Communication Engineering College of Engineering Trivandrum Trivandrum India
image denoising, in which the original image is reconstructed by eliminating noise from a noise-corrupted version of the original image, is one of the greatest requirements in the image processing field. The sources o... 详细信息
来源: 评论
Physics-informed deep learning for fringe pattern analysis
收藏 引用
Opto-Electronic Advances 2024年 第4期7卷 4-15页
作者: Wei Yin Yuxuan Che Xinsheng Li Mingyu Li Yan Hu Shijie Feng Edmund Y.Lam Qian Chen Chao Zuo Smart Computational Imaging Laboratory(SCILab) School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjing 210094China Smart Computational Imaging Research Institute(SCIRI)of Nanjing University of Science and Technology Nanjing 210019China Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense Nanjing 210094China Department of Electrical and Electronic Engineering The University of Hong KongPokfulamHong Kong SAR 999077China
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical *** neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been... 详细信息
来源: 评论