咨询与建议

限定检索结果

文献类型

  • 2,796 篇 会议
  • 1,590 篇 期刊文献
  • 32 篇 学位论文
  • 23 册 图书
  • 4 篇 科技报告

馆藏范围

  • 4,445 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,795 篇 工学
    • 1,539 篇 计算机科学与技术...
    • 822 篇 软件工程
    • 807 篇 电气工程
    • 693 篇 光学工程
    • 578 篇 信息与通信工程
    • 333 篇 电子科学与技术(可...
    • 275 篇 生物工程
    • 267 篇 材料科学与工程(可...
    • 234 篇 控制科学与工程
    • 148 篇 仪器科学与技术
    • 145 篇 生物医学工程(可授...
    • 117 篇 动力工程及工程热...
    • 89 篇 机械工程
    • 65 篇 化学工程与技术
    • 41 篇 力学(可授工学、理...
    • 39 篇 测绘科学与技术
    • 39 篇 环境科学与工程(可...
    • 35 篇 航空宇航科学与技...
    • 33 篇 安全科学与工程
  • 2,001 篇 理学
    • 1,583 篇 物理学
    • 322 篇 生物学
    • 303 篇 数学
    • 111 篇 化学
    • 70 篇 统计学(可授理学、...
    • 41 篇 系统科学
  • 258 篇 管理学
    • 167 篇 管理科学与工程(可...
    • 98 篇 图书情报与档案管...
  • 191 篇 医学
    • 148 篇 临床医学
    • 95 篇 基础医学(可授医学...
    • 47 篇 药学(可授医学、理...
  • 28 篇 法学
  • 16 篇 农学
  • 10 篇 经济学
  • 8 篇 教育学
  • 4 篇 军事学
  • 4 篇 艺术学
  • 2 篇 文学

主题

  • 1,367 篇 neural networks
  • 1,237 篇 optical computin...
  • 452 篇 optical fiber ne...
  • 325 篇 artificial neura...
  • 273 篇 convolutional ne...
  • 231 篇 optical imaging
  • 211 篇 neurons
  • 203 篇 deep learning
  • 184 篇 feature extracti...
  • 169 篇 machine learning
  • 140 篇 training
  • 134 篇 nonlinear optics
  • 127 篇 optical sensors
  • 124 篇 integrated optic...
  • 115 篇 optical characte...
  • 106 篇 computer archite...
  • 106 篇 photonics
  • 105 篇 image segmentati...
  • 102 篇 pattern recognit...
  • 102 篇 computing system...

机构

  • 23 篇 beijing univ pos...
  • 18 篇 department of el...
  • 16 篇 princeton univ d...
  • 14 篇 university of ch...
  • 14 篇 xidian univ stat...
  • 14 篇 tsinghua univ de...
  • 12 篇 shanghai jiao to...
  • 11 篇 school of optica...
  • 11 篇 queens univ dept...
  • 11 篇 peng cheng labor...
  • 11 篇 george washingto...
  • 10 篇 上海理工大学
  • 10 篇 state key labora...
  • 10 篇 optical sciences...
  • 10 篇 univ calif los a...
  • 10 篇 zhejiang univ co...
  • 10 篇 univ calif los a...
  • 9 篇 school of electr...
  • 9 篇 univ chinese aca...
  • 9 篇 peng cheng lab p...

作者

  • 26 篇 prucnal paul r.
  • 24 篇 shastri bhavin j...
  • 22 篇 ozcan aydogan
  • 22 篇 bienstman peter
  • 22 篇 xu xingyuan
  • 21 篇 englund dirk
  • 21 篇 hao yue
  • 20 篇 moss david j.
  • 19 篇 tan mengxi
  • 19 篇 xiang shuiying
  • 18 篇 brunner daniel
  • 17 篇 gu jiaqi
  • 17 篇 t. roska
  • 16 篇 zhang yahui
  • 16 篇 sorger volker j.
  • 15 篇 lin xing
  • 15 篇 dambre joni
  • 15 篇 mitchell arnan
  • 15 篇 morandotti rober...
  • 14 篇 guo xingxing

语言

  • 4,136 篇 英文
  • 163 篇 其他
  • 145 篇 中文
  • 2 篇 德文
  • 1 篇 西班牙文
  • 1 篇 法文
  • 1 篇 荷兰文
  • 1 篇 俄文
检索条件"任意字段=Optical Computing and Neural Networks"
4445 条 记 录,以下是121-130 订阅
排序:
Rapid configuring method for a programmable photonic integrated circuit based on a tandem neural network
收藏 引用
OPTICS LETTERS 2025年 第5期50卷 1731-1734页
作者: Fan, Zeyang Dan, Yihang Lin, Junmin Zhang, Tian Dai, Jian Xu, Kun Beijing Univ Posts & Telecommun State Key Lab Informat Photon & Opt Commun Beijing 100876 Peoples R China China Mobile Commun Grp Shaanxi Co Ltd Customer Response Ctr Xian 710077 Peoples R China China Telecom Unmanned Technol Jiangsu Co Ltd Prod & Res & Dev Dept Jiangsu 210019 Peoples R China
Programmable photonic integrated circuits (PPICs), as optical analog matrix multipliers, emerge as a leading candidate of a revolutionary technology. However, the efficient voltage configuration of programmable device... 详细信息
来源: 评论
Efficient Design Optimization for Diffractive Deep neural networks
收藏 引用
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2025年 第3期44卷 1199-1203页
作者: Wu, Kun Liu, Yuncheng Gao, Hui Tao, Jun Xiong, Wei Li, Xin Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China Huazhong Univ Sci & Technol Natl Lab Optoelect Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Sch Optic & Elect Informat Wuhan 430074 Peoples R China Optic Valley Lab Hubei Wuhan 430074 Peoples R China Fudan Univ Sch Microelect State Key Lab Integrated Chips & Syst Shanghai 200433 Peoples R China Duke Kunshan Univ Data Sci Res Ctr Kunshan 215316 Jiangsu Peoples R China
Since diffractive deep neural network (D2NN) provides a full optical solution to implement deep neural networks (DNNs), it offers ultrafast operation speed and virtually unlimited bandwidth, yielding an alternative-ye... 详细信息
来源: 评论
Real-time target recognition with all-optical neural networks for ghost imaging
收藏 引用
OPTICS EXPRESS 2024年 第23期32卷 40967-40978页
作者: Xi, Yuanyuan He, Yuchen Wang, Yadi Chen, Hui Zheng, Huaibin Liu, Jianbin Zhou, Yu Xu, Zhuo Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China Xi An Jiao Tong Univ Elect Mat Res Lab Key Lab Sch Elect Sci & EngnMinist Educ Xian 710049 Peoples R China Xi An Jiao Tong Univ Int Ctr Dielect Res Sch Elect Sci & Engn Xian 710049 Peoples R China Xi An Jiao Tong Univ Dept Appl Phys MOE Key Lab Nonequilibrium Synth & Modulat Condens Xian 710049 Peoples R China
The generation and structural characteristics of random speckle patterns impact the implementation and imaging quality of computational ghost imaging. Their modulation is limited by traditional electronic hardware. We... 详细信息
来源: 评论
Energy-efficient photonic neural networks for high-speed AI computation
收藏 引用
JOURNAL OF OPTICS-INDIA 2025年 1-9页
作者: Palai, Gopinath Kumar, Bhukya Arun Mishra, Bibhu Kalyan Laha, Jasobanta Satpathy, Rabinarayan Sri Sri Univ Fac Engn & Technol Cuttack 756004 Odisha India Lovely Profess Univ Phagwara Punjab India
Photonic neural networks (PNNs) are an innovative computational paradigm that leverages the speed and efficiency of light to perform neural network operations. By utilizing components like lasers, Mach-Zehnder Interfe... 详细信息
来源: 评论
Deep photonic reservoir computing recurrent network
收藏 引用
OPTICA 2023年 第12期10卷 1745-1751页
作者: Shen, Yi-Wei Li, Rui-Qian Liu, Guan-Ting Yu, Jingyi He, Xuming Yi, Lilin Wang, Cheng ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Dept Elect Engn State Key Lab Adv Opt Commun Syst & Networks Shanghai 200240 Peoples R China ShanghaiTech Univ Shanghai Engn Res Ctr Energy Efficient & Custom A Shanghai 201210 Peoples R China
Deep neural networks usually process information through multiple hidden layers. However, most hardware reservoir computing recurrent networks only have one hidden reservoir layer, which significantly limits the capab... 详细信息
来源: 评论
Hybrid Deep Photonic Spiking neural Network for Automatic Modulation Recognition
收藏 引用
JOURNAL OF LIGHTWAVE TECHNOLOGY 2025年 第6期43卷 2672-2680页
作者: Zhang, Yahui Huang, Zhiquan Xiang, Shuiying Guo, Xingxing Zhang, Wu Tan, Qinggui Han, Genquan Hao, Yue Xidian Univ State Key Lab Integrated Serv Networks Xidian 710071 Peoples R China Xidian Univ Sch Microelect State Key Discipline Lab Wide Bandgap Semicond Tec Xian 710071 Peoples R China China Acad Space Technol CAST Xian Xian 100081 Peoples R China
Spiking neural networks (SNNs) possess remarkable capabilities in processing spatial and temporal information. Photonic SNNs, combining the advantages of high-bandwidth and low-latency of photonics, are highly-efficie... 详细信息
来源: 评论
Neuromorphic Network with Photonic Weighting and Photoelectronic Nonlinear Activation Based on SOA and APD
收藏 引用
ACS PHOTONICS 2024年 第10期11卷 4193-4199页
作者: Zheng, Dianzhuang Xiang, Shuiying Li, Nianqiang Zhang, Yahui Guo, Xingxing Zhao, Liyan Hao, Yue Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China Xidian Univ Sch Microelect State Key Discipline Lab Wide Band Gap Semicond Te Xian 710071 Peoples R China Soochow Univ Sch Optoelect Sci & Engn Suzhou 215000 Peoples R China
Photonic neuromorphic computing is emerging as a promising approach for low-latency, energy-efficient nonvon Neumann computing systems. Nonlinear activation functions are key components of photonic neural networks. Ho... 详细信息
来源: 评论
LUMF-YOLO: a lightweight object detection network integrating UAV motion features
收藏 引用
computing 2025年 第1期107卷 1-22页
作者: Wang, Sicheng Li, Gang He, Bin Cheng, Bin Ding, Yulong Li, Wei Tongji Univ Coll Elect & Informat Engn Shanghai 201804 Peoples R China Shanghai Res Inst Intelligent Autonomous Syst Shanghai 200120 Peoples R China Shanghai Sunshine Rehabil Ctr Shanghai 201613 Peoples R China Natl Key Lab Autonomous Intelligent Unmanned Syst Shanghai 200120 Peoples R China
In recent years, the network structure has become more complex to improve the accuracy of convolutional neural networks (CNN), increasing computing power requirements. However, the edge computing capability of unmanne... 详细信息
来源: 评论
Efficient on-chip training of large-scale optical neural network through block adjoint training algorithm
收藏 引用
OPTICS EXPRESS 2024年 第26期32卷 46633-46648页
作者: Yang, Zhiwei Zhang, Tian Dai, Jian Xu, Kun Beijing Univ Posts & Telecommun State Key Lab Informat Photon & Opt Commun Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Sch Elect Engn Beijing 100876 Peoples R China
MZI-based block optical neural networks (BONNs), which utilize block matrix multiplication to achieve large-scale network models, have garnered significant attention but still lack efficient training algorithms. In th... 详细信息
来源: 评论
Reliable adaptive edge-cloud collaborative DNN inference acceleration scheme combining computing and communication resources in optical networks
收藏 引用
JOURNAL OF optical COMMUNICATIONS AND NETWORKING 2023年 第10期15卷 750-764页
作者: Yin, Shan Jiao, Yurong You, Chenyu Cai, Mengru Jin, Tianyu Huang, Shanguo Beijing Univ Posts & Telecommun State Key Lab Informat Photon & Opt Commun Beijing 100876 Peoples R China
With the continuous development of the Artificial Intelligence of Things, deep neural network (DNN) models require a larger amount of computing capacity. The emerging edge-cloud collaboration architecture in optical n... 详细信息
来源: 评论