咨询与建议

限定检索结果

文献类型

  • 388 篇 会议
  • 219 篇 期刊文献

馆藏范围

  • 607 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 470 篇 工学
    • 419 篇 计算机科学与技术...
    • 391 篇 软件工程
    • 138 篇 光学工程
    • 44 篇 生物医学工程(可授...
    • 37 篇 生物工程
    • 32 篇 电气工程
    • 26 篇 信息与通信工程
    • 22 篇 控制科学与工程
    • 19 篇 材料科学与工程(可...
    • 16 篇 仪器科学与技术
    • 9 篇 电子科学与技术(可...
    • 9 篇 建筑学
    • 9 篇 航空宇航科学与技...
    • 5 篇 机械工程
    • 5 篇 土木工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 轻工技术与工程
    • 3 篇 冶金工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
  • 211 篇 理学
    • 144 篇 物理学
    • 110 篇 数学
    • 36 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 1 篇 海洋科学
  • 8 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 2 篇 农学
    • 2 篇 作物学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 军事学

主题

  • 321 篇 image processing
  • 176 篇 pattern recognit...
  • 29 篇 pattern recognit...
  • 6 篇 satellites
  • 5 篇 imaging techniqu...
  • 5 篇 remote sensing
  • 4 篇 systems science ...
  • 4 篇 vision
  • 4 篇 computer vision
  • 3 篇 biomedical engin...
  • 3 篇 robots
  • 3 篇 image reconstruc...
  • 2 篇 astronomy
  • 2 篇 data processing
  • 2 篇 nuclear medicine
  • 2 篇 spacecraft
  • 2 篇 image segmentati...
  • 2 篇 image coding
  • 2 篇 computer program...
  • 2 篇 computers, micro...

机构

  • 7 篇 univ of michigan...
  • 7 篇 artificial intel...
  • 6 篇 univ of southern...
  • 5 篇 harvard univ cam...
  • 4 篇 univ of maryland...
  • 4 篇 columbia univ ny
  • 3 篇 state univ of ne...
  • 3 篇 univ of illinois...
  • 2 篇 univ of massachu...
  • 2 篇 comput & inf sci...
  • 2 篇 inria le chesnay
  • 2 篇 hebrew univ of j...
  • 2 篇 mit cambridge ma
  • 2 篇 dept of comput s...
  • 2 篇 yale univ new ha...
  • 2 篇 univ of texas au...
  • 2 篇 at&t bell lab mu...
  • 2 篇 univ of toronto ...
  • 2 篇 univ of southern...
  • 2 篇 univ of maryland...

作者

  • 12 篇 anon
  • 11 篇 haralick robert ...
  • 9 篇 fu k.s.
  • 6 篇 mitchell o.r.
  • 6 篇 rosenfeld azriel
  • 6 篇 huang thomas s.
  • 6 篇 hall ernest l.
  • 6 篇 hall e.l.
  • 6 篇 pavlidis theodos...
  • 6 篇 shapiro stephen ...
  • 6 篇 schunck brian g.
  • 6 篇 toussaint godfri...
  • 6 篇 sklansky j.
  • 5 篇 peleg shmuel
  • 5 篇 davis larry s.
  • 5 篇 jain anil k.
  • 5 篇 shapiro linda g.
  • 5 篇 tanimoto steven ...
  • 5 篇 modestino j.w.
  • 5 篇 kashyap r.l.

语言

  • 384 篇 英文
  • 223 篇 其他
检索条件"任意字段=Proc IEEE Comput Soc Conf Pattern Recognition Image Process"
607 条 记 录,以下是1-10 订阅
排序:
Orthogonal Transform-Driven Data Augmentation for Limited Gaussian-Tainted Dataset
收藏 引用
ieee ACCESS 2024年 12卷 127272-127282页
作者: Won Yoon, Jung Jun Yook, Hyun Min Hong, Pyo Kyu Lee, Youn Kim, Tae Hyung Hongik Univ Dept Comp Engn Seoul 04066 South Korea
A large amount of data collected from sensors exhibits Gaussian noise characteristics, making denoising and related processing critical. However, data scarcity can lead to overfitting, posing challenges in training de... 详细信息
来源: 评论
Decoupling-and-Aggregating for image Exposure Correction
Decoupling-and-Aggregating for Image Exposure Correction
收藏 引用
ieee/CVF conference on computer Vision and pattern recognition (CVPR)
作者: Wang, Yang Peng, Long Li, Liang Cao, Yang Zha, Zheng-Jun Univ Sci & Technol China Hefei Peoples R China Chinese Acad Sci Inst Comput Tech Key Lab Intell Info Proc Beijing Peoples R China
The images captured under improper exposure conditions often suffer from contrast degradation and detail distortion. Contrast degradation will destroy the statistical properties of low-frequency components, while deta... 详细信息
来源: 评论
Attribute Group Editing for Reliable Few-shot image Generation
Attribute Group Editing for Reliable Few-shot Image Generati...
收藏 引用
ieee/CVF conference on computer Vision and pattern recognition (CVPR)
作者: Ding, Guanqi Han, Xinzhe Wang, Shuhui Wu, Shuzhe Jin, Xin Tu, Dandan Huang, Qingming Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Key Lab Intell Info Proc Inst Comput Tech Beijing Peoples R China Huawei Cloud EI Innovat Lab Shanghai Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Few-shot image generation is a challenging task even using the state-of-the-art Generative Adversarial Networks (GANs). Due to the unstable GAN training process and the limited training data, the generated images are ... 详细信息
来源: 评论
Automatic recognition of Learning Resource Category in a Digital Library  21
Automatic Recognition of Learning Resource Category in a Dig...
收藏 引用
21st ACM/ieee Joint conference on Digital Libraries (JCDL)
作者: Banerjee, Soumya Sanyal, Debarshi Kumar Chattopadhyay, Samiran Bhowmick, Plaban Kumar Das, Partha Pratim IIT Kharagpur Kharagpur 721302 W Bengal India Indian Assoc Cultivat Sci Kolkata 700032 India Jadavpur Univ Kolkata 700106 India
Digital libraries generally need to process a large volume of diverse document types. The collection and tagging of metadata is a long, error-prone, workforce-consuming task. We are attempting to build an automatic me... 详细信息
来源: 评论
Foreword
Proceedings of the 2016 International Conference on Image Pr...
收藏 引用
proceedings of the 2016 International conference on image processing, computer Vision, and pattern recognition, IPCV 2016 2016年
作者: Abd-Wahab, Mohd Helmy Al-Bakry, Abbas Al-Holou, Nizar Arabnia, Hamid R. Bhattacharya, Mahua Martinez Castillo, Juan Jose Daimi, Kevin Deligiannidis, Leonidas Djoudi, Lamia Atma Duong, Trung Eshaghian-Wilner, Mary Mehrnoosh Gravvanis, George A. Huang, Ruizhu Jandieri, George Kim, Byung-Gyu Kim, Tai-hoon Korovin, Iakov Lai, Guoming Lee, Hyo Jong Bin Mansor, Muhammad Naufal Marsh, Andrew Mostafaeipour, Ali Park, James J. Patil, Shashikant Ponalagusamy, R. Schaefer, Gerald Singh, Akash Solo, Ashu M.G. Swee, Sim Kok Thomas, Jaya Tinetti, Fernando G. Vladimir, Hahanov Wang, Shiuh-Jeng Yang, Mary Yoe, Hyun You, Jane Zhao, Wenbing Department of Computer Engineering University Tun Hussein Onn Malaysia Malaysia University of IT and Communications Baghdad Iraq Electrical and Computer Engineering Department IEEE/SEM-Computer Chapter University of Detroit Mercy DetroitMI United States University of Georgia United States ABV Indian Institute of Information Technology and Management MHRD Government of India India Acantelys Alan Turing Nikola Tesla Research Group and GIPEB Universidad Nacional Abierta Venezuela Computer Science and Software Engineering Programs Department of Mathematics Computer Science and Software Engineering University of Detroit Mercy DetroitMI United States Department of Computer Information Systems Wentworth Institute of Technology BostonMA United States Synchrone Technologies France Rutgers University State University of New Jersey New Jersey United States University of Southern California California United States Electrical Engineering University of California Los Angeles Los Angeles [UCLA CA United States Advanced Scientific Computing Applied Math and Applications Research Group Applied Mathematics and Numerical Computing and Department of ECE School of Engineering Democritus University of Thrace Xanthi Greece Texas Advanced Computing Center University of Texas AustinTX United States Georgian Technical University Tbilisi Georgia Institute of Cybernetics Georgian Academy of Science Georgia Multimedia Processing CommunicationsLab.[MPCL Department of Computer Science and Engineering College of Engineering SunMoon University Korea Republic of School of Information and Computing Science University of Tasmania Australia Southern Federal University Russia Computer Science and Technology Sun Yat-Sen University Guangzhou China Center for Advanced Image and Information Technology Division of Computer Science and Engineering Chonbuk National University Korea Republic of Faculty of Engineering Technology Kampus Uniciti Alam Universiti Malaysia Perlis UniMAP Malaysi
来源: 评论
STATISTICAL pattern recognition FOR REAL-TIME image EDGE DETECTION ON FPGA  12
STATISTICAL PATTERN RECOGNITION FOR REAL-TIME IMAGE EDGE DET...
收藏 引用
12th ieee International conference on Signal processing (ICSP)
作者: Liu, Ziyan Qi, Jia Feng, Liang Feng, Li Guizhou Univ Coll Elect & Informat Guiyang 550025 Peoples R China State Grid Chongqing Elect Power Co Chongqing 400014 Peoples R China
image edge detection is a fundamental process in computer vision. image edges represent the major fraction of information in an image. Traditional edge-detection techniques focus on the gradient calculation method. In... 详细信息
来源: 评论
proceedings of the 2012 International conference on image processing, computer Vision, and pattern recognition, IPCV 2012: Foreword
Proceedings of the 2012 International Conference on Image Pr...
收藏 引用
proceedings of the 2012 International conference on image processing, computer Vision, and pattern recognition, IPCV 2012 2012年 1卷
作者: Arabnia, Hamid R. Deligiannidis, Leonidas ISIBM United States Advisory Board IEEE TC on Scalable Computing University of Georgia GA United States Wentworth Institute of Technology Boston MA United States
来源: 评论
Multimodal image matching using self similarity
Multimodal image matching using self similarity
收藏 引用
2011 ieee Applied imagery pattern recognition Workshop: Imaging for Decision Making, AIPR 2011
作者: Huang, Jing You, Suya Zhao, Jiaping Department of Computer Science University of Southern California Los Angeles CA 90089 United States
This paper presents a new image description and matching process based on internal self-similarity property of images. Various definitions of self-similarity are explored to find the best one for image matching. The m... 详细信息
来源: 评论
image registration and a metric to assess the transformation function
Image registration and a metric to assess the transformation...
收藏 引用
2011 ieee Applied imagery pattern recognition Workshop: Imaging for Decision Making, AIPR 2011
作者: Marshall, John Doucette, Peter NGA 7500 GEOINT Drive Springfield VA 22150 United States
image registration has been a broadly applied topic across the photogrammetric/remote sensing and computer vision communities. It is a foundational step for many applications such geopositioning, data fusion, change d... 详细信息
来源: 评论
Fusion of Elevation Data into Satellite image Classification Using Refined Production Rules  1
收藏 引用
8th International conference on image Analysis and recognition (ICIAR) / 2nd International conference on Autonomous and Intelligent Systems (AIS)
作者: Al Momani, Bilal Morrow, Philip McClean, Sally Cisco Syst Galway Ireland Univ Ulster Fac Engn Sch Comput & Informat Engn Coleraine BT52 1SA Londonderry North Ireland
The image classification process is based on the assumption that pixels which have similar spatial distribution patterns, or statistical characteristics, belong to the same spectral class. In a previous study we have ... 详细信息
来源: 评论