咨询与建议

限定检索结果

文献类型

  • 759 篇 会议
  • 22 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 791 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 641 篇 工学
    • 623 篇 计算机科学与技术...
    • 500 篇 软件工程
    • 88 篇 信息与通信工程
    • 34 篇 化学工程与技术
    • 32 篇 生物工程
    • 22 篇 控制科学与工程
    • 18 篇 机械工程
    • 13 篇 电气工程
    • 11 篇 农业工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 材料科学与工程(可...
  • 186 篇 管理学
    • 154 篇 图书情报与档案管...
    • 46 篇 管理科学与工程(可...
    • 24 篇 工商管理
  • 184 篇 理学
    • 99 篇 数学
    • 38 篇 生物学
    • 35 篇 统计学(可授理学、...
    • 34 篇 化学
    • 27 篇 物理学
    • 14 篇 系统科学
  • 29 篇 文学
    • 27 篇 外国语言文学
    • 5 篇 中国语言文学
  • 27 篇 医学
    • 24 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 9 篇 公共卫生与预防医...
    • 8 篇 药学(可授医学、理...
  • 23 篇 法学
    • 20 篇 社会学
  • 14 篇 教育学
    • 12 篇 教育学
  • 11 篇 农学
    • 11 篇 作物学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 182 篇 natural language...
  • 57 篇 graphic methods
  • 53 篇 natural language...
  • 36 篇 computational li...
  • 24 篇 semantics
  • 14 篇 deep learning
  • 13 篇 iterative method...
  • 12 篇 syntactics
  • 11 篇 natural language...
  • 11 篇 classification (...
  • 10 篇 sentiment analys...
  • 9 篇 machine translat...
  • 9 篇 knowledge graph
  • 9 篇 data mining
  • 9 篇 text processing
  • 9 篇 extraction
  • 8 篇 heuristic method...
  • 7 篇 speech recogniti...
  • 7 篇 machine learning
  • 6 篇 artificial intel...

机构

  • 5 篇 natural language...
  • 5 篇 institute for na...
  • 4 篇 language technol...
  • 3 篇 lviv polytechnic...
  • 3 篇 sichuan tianfu b...
  • 3 篇 key laboratory o...
  • 3 篇 department of co...
  • 3 篇 handan institute...
  • 3 篇 national enginee...
  • 3 篇 natural language...
  • 3 篇 baidu inc.
  • 3 篇 carnegie mellon ...
  • 3 篇 department of co...
  • 3 篇 center for langu...
  • 3 篇 idiap research i...
  • 3 篇 language technol...
  • 3 篇 china academy of...
  • 2 篇 department of in...
  • 2 篇 human language t...
  • 2 篇 singapore univer...

作者

  • 6 篇 ney hermann
  • 5 篇 biemann chris
  • 5 篇 dredze mark
  • 5 篇 waibel alex
  • 4 篇 liu qun
  • 4 篇 krallinger marti...
  • 4 篇 llopis fernando
  • 4 篇 daelemans walter
  • 4 篇 muñoz rafael
  • 4 篇 vysotska victori...
  • 4 篇 zhang qi
  • 3 篇 pei jian
  • 3 篇 zhou guodong
  • 3 篇 malmasi shervin
  • 3 篇 guo xiaojie
  • 3 篇 thayaparan mokan...
  • 3 篇 aras hidir
  • 3 篇 gascó luis
  • 3 篇 bao-liang lu
  • 3 篇 xia yinglong

语言

  • 768 篇 英文
  • 16 篇 其他
  • 2 篇 西班牙文
  • 2 篇 中文
  • 1 篇 法文
  • 1 篇 俄文
  • 1 篇 乌克兰文
检索条件"任意字段=Proceedings of the 2010 Workshop on Graph-based Methods for Natural Language Processing"
791 条 记 录,以下是281-290 订阅
排序:
Big Data Approach to Developing Adaptable Corpus Tools  4
Big Data Approach to Developing Adaptable Corpus Tools
收藏 引用
4th International Conference on Computational Linguistics and Intelligent Systems (COLINS)
作者: Lutskiv, Andriy Popovych, Nataliya Ternopil Ivan Puluj Natl Tech Univ Comp Syst & Networks Dept Ternopol Ukraine Uzhgorod Natl Univ State Univ Dept Multicultural Educ & Translat Uzhgorod Ukraine
Thesis deals with the development of corpus tools which allow building corpus of religious and historical texts. It is foreseen that the corpus has the features of data ingestion, text data preprocessing, statistics c... 详细信息
来源: 评论
graph-based semi-supervised learning for natural language understanding  13
Graph-based semi-supervised learning for natural language un...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Qiu, Zimeng Cho, Eunah Ma, Xiaochun Campbell, William M. Electrical and Computer Engineering Department Carnegie Mellon University United States Amazon Alexa AI
Semi-supervised learning is an efficient method to augment training data automatically from unlabeled data. Development of many natural language understanding (NLU) applications has a challenge where unlabeled data is... 详细信息
来源: 评论
Identifying supporting facts for multi-hop question answering with document graph networks  13
Identifying supporting facts for multi-hop question answerin...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Thayaparan, Mokanarangan Valentino, Marco Schlegel, Viktor Freitas, Andre Department of Computer Science University of Manchester United Kingdom
Recent advances in reading comprehension have resulted in models that surpass human performance when the answer is contained in a single, continuous passage of text. However, complex Question Answering (QA) typically ... 详细信息
来源: 评论
Predicting the increase in postoperative motor deficits in patients with supratentorial gliomas using machine learning methods  23
Predicting the increase in postoperative motor deficits in p...
收藏 引用
Supplementary 23rd International Conference on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL 2021
作者: Kosyrkova, Alexandra Ilyushin, Eugene Saada, Daniel Afandiev, Ramin Baev, Alexander Pogosbekyan, Eudard Okhlopkov, Vladimir Danilov, Gleb Batalov, Artem Pronin, Igor Zakharova, Natalia Ogurtsova, Anna Kravchuck, Alexander Pitskhelauri, David Potapov, Alexander Goryaynov, Sergey "N. N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian Federation Lomonosov Moscow State University Russia
Surgery of glial tumors of the brain located in the motor areas vicinity is associated with a high risk of increasing neurological deficits. Motor deficit affects overall survival in this group of patients. Nowadays, ... 详细信息
来源: 评论
Red dragon AI at Textgraphs 2019 shared task: language model assisted explanation generation  13
Red dragon AI at TextGraphs 2019 shared task: Language model...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Chia, Yew Ken Witteveen, Sam Andrews, Martin Red Dragon AI Singapore Singapore
The Textgraphs-13 Shared Task on Explanation Regeneration (Jansen and Ustalov, 2019) asked participants to develop methods to reconstruct gold explanations for elementary science questions. Red Dragon AI's entries... 详细信息
来源: 评论
Joint semantic and distributional word representations with multi-graph embeddings  13
Joint semantic and distributional word representations with ...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Moreux, Pierre-Daix Galle, Matthias Ubisoft Entertainment SA France Naver Labs Europe France
Word embeddings continue to be of great use for NLP researchers and practitioners due to their training speed and easiness of use and distribution. Prior work has shown that the representation of those words can be im... 详细信息
来源: 评论
Mitigating File-Injection Attacks with natural language processing  6
Mitigating File-Injection Attacks with Natural Language Proc...
收藏 引用
6th ACM International workshop on Security and Privacy Analytics (IWSPA)
作者: Liu, Hao Wang, Boyang Univ Cincinnati Cincinnati OH 45221 USA
Searchable Encryption can bridge the gap between privacy protection and data utilization. As it leaks access pattern to attain practical search performance, it is vulnerable under advanced attacks. While these advance... 详细信息
来源: 评论
ASU at Textgraphs 2019 shared task: Explanation regeneration using language models and iterative re-ranking  13
ASU at TextGraphs 2019 shared task: Explanation regeneration...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Banerjee, Pratyay School of Computing Informatics and Decision Systems Engineering Arizona State University United States
In this work we describe the system from natural language processing group at Arizona State University for the Textgraphs 2019 Shared Task. The task focuses on Explanation Regeneration, an intermediate step towards ge... 详细信息
来源: 评论
Event detection from news in indian languages using similarity based pattern finding approach  12
Event detection from news in indian languages using similari...
收藏 引用
Working Notes of FIRE - 12th Forum for Information Retrieval Evaluation, FIRE-WN 2020
作者: Basak, Shubham Indian Statistical Institute 203 Barrackpore Trunk Road Kolkata WB700 108 India
In this work, we propose a rule based method to identify the event type and create a frame for that event. With the help of natural language Toolkit (NLTK) and preloaded SpaCy models, we have tried to define certain m... 详细信息
来源: 评论
Neural speech translation using lattice transformations and graph networks  13
Neural speech translation using lattice transformations and ...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Beck, Daniel Cohn, Trevor Haffari, Gholamreza School of Computing and Information Systems University of Melbourne Australia Faculty of Information Technology Monash University Australia
Speech translation systems usually follow a pipeline approach, using word lattices as an intermediate representation. However, previous work assume access to the original transcriptions used to train the ASR system, w... 详细信息
来源: 评论