咨询与建议

限定检索结果

文献类型

  • 759 篇 会议
  • 22 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 791 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 641 篇 工学
    • 623 篇 计算机科学与技术...
    • 500 篇 软件工程
    • 88 篇 信息与通信工程
    • 34 篇 化学工程与技术
    • 32 篇 生物工程
    • 22 篇 控制科学与工程
    • 18 篇 机械工程
    • 13 篇 电气工程
    • 11 篇 农业工程
    • 11 篇 生物医学工程(可授...
    • 7 篇 材料科学与工程(可...
  • 186 篇 管理学
    • 154 篇 图书情报与档案管...
    • 46 篇 管理科学与工程(可...
    • 24 篇 工商管理
  • 184 篇 理学
    • 99 篇 数学
    • 38 篇 生物学
    • 35 篇 统计学(可授理学、...
    • 34 篇 化学
    • 27 篇 物理学
    • 14 篇 系统科学
  • 29 篇 文学
    • 27 篇 外国语言文学
    • 5 篇 中国语言文学
  • 27 篇 医学
    • 24 篇 基础医学(可授医学...
    • 19 篇 临床医学
    • 9 篇 公共卫生与预防医...
    • 8 篇 药学(可授医学、理...
  • 23 篇 法学
    • 20 篇 社会学
  • 14 篇 教育学
    • 12 篇 教育学
  • 11 篇 农学
    • 11 篇 作物学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 182 篇 natural language...
  • 57 篇 graphic methods
  • 53 篇 natural language...
  • 36 篇 computational li...
  • 24 篇 semantics
  • 14 篇 deep learning
  • 13 篇 iterative method...
  • 12 篇 syntactics
  • 11 篇 natural language...
  • 11 篇 classification (...
  • 10 篇 sentiment analys...
  • 9 篇 machine translat...
  • 9 篇 knowledge graph
  • 9 篇 data mining
  • 9 篇 text processing
  • 9 篇 extraction
  • 8 篇 heuristic method...
  • 7 篇 speech recogniti...
  • 7 篇 machine learning
  • 6 篇 artificial intel...

机构

  • 5 篇 natural language...
  • 5 篇 institute for na...
  • 4 篇 language technol...
  • 3 篇 lviv polytechnic...
  • 3 篇 sichuan tianfu b...
  • 3 篇 key laboratory o...
  • 3 篇 department of co...
  • 3 篇 handan institute...
  • 3 篇 national enginee...
  • 3 篇 natural language...
  • 3 篇 baidu inc.
  • 3 篇 carnegie mellon ...
  • 3 篇 department of co...
  • 3 篇 center for langu...
  • 3 篇 idiap research i...
  • 3 篇 language technol...
  • 3 篇 china academy of...
  • 2 篇 department of in...
  • 2 篇 human language t...
  • 2 篇 singapore univer...

作者

  • 6 篇 ney hermann
  • 5 篇 biemann chris
  • 5 篇 dredze mark
  • 5 篇 waibel alex
  • 4 篇 liu qun
  • 4 篇 krallinger marti...
  • 4 篇 llopis fernando
  • 4 篇 daelemans walter
  • 4 篇 muñoz rafael
  • 4 篇 vysotska victori...
  • 4 篇 zhang qi
  • 3 篇 pei jian
  • 3 篇 zhou guodong
  • 3 篇 malmasi shervin
  • 3 篇 guo xiaojie
  • 3 篇 thayaparan mokan...
  • 3 篇 aras hidir
  • 3 篇 gascó luis
  • 3 篇 bao-liang lu
  • 3 篇 xia yinglong

语言

  • 755 篇 英文
  • 29 篇 其他
  • 2 篇 西班牙文
  • 2 篇 中文
  • 1 篇 法文
  • 1 篇 俄文
  • 1 篇 乌克兰文
检索条件"任意字段=Proceedings of the 2010 Workshop on Graph-based Methods for Natural Language Processing"
791 条 记 录,以下是371-380 订阅
排序:
Embedding Senses for Efficient graph-based Word Sense Disambiguation  10
Embedding Senses for Efficient Graph-based Word Sense Disamb...
收藏 引用
10th workshop on graph-based methods for natural language processing, Textgraphs 2016, in conjunction with the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human language Technologies, NAACL-HLT 2016
作者: Piña, Luis Nieto Johansson, Richard University of Gothenburg Sweden
We propose a simple graph-based method for word sense disambiguation (WSD) where sense and context embeddings are constructed by applying the Skip-gram method to random walks over the sense graph. We used this method ... 详细信息
来源: 评论
Better together: Combining language and social interactions into a shared representation  10
Better together: Combining language and social interactions ...
收藏 引用
10th workshop on graph-based methods for natural language processing, Textgraphs 2016, in conjunction with the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human language Technologies, NAACL-HLT 2016
作者: Lai, Yi-Yu Li, Chang Goldwasser, Dan Neville, Jennifer Department of Computer Science Purdue University West LafayetteIN United States
Despite the clear inter-dependency between analyzing the interactions in social networks, and analyzing the natural language content of these interactions, these aspects are typically studied independently. In this pa... 详细信息
来源: 评论
UNIMIB@NEEL-IT : Named entity recognition and linking of Italian tweets  3
UNIMIB@NEEL-IT : Named entity recognition and linking of Ita...
收藏 引用
3rd Italian Conference on Computational Linguistics, CLiC-it 2016 and 5th Evaluation Campaign of natural language processing and Speech Tools for Italian, EVALITA 2016
作者: Cecchini, Flavio Massimiliano Fersini, Elisabetta Manchanda, Pikakshi Messina, Enza Nozza, Debora Palmonari, Matteo Sas, Cezar University of Milano BicoccaMilan Italy
This paper describes the framework proposed by the UNIMIB Team for the task of Named Entity Recognition and Linking of Italian tweets (NEEL-IT). The proposed pipeline, which represents an entry level system, is compos... 详细信息
来源: 评论
Steps Toward Automatic Understanding of the Function of Affective language in Support Groups  4
Steps Toward Automatic Understanding of the Function of Affe...
收藏 引用
4th ACM workshop on natural language processing for Social Media, SocialNLP 2016, associated with the Conference on Empirical methods in natural language processing, EMNLP 2016
作者: Navindgi, Amit Brun, Caroline Masson, Cécile Boulard Nowson, Scott Veritas Technologies Mountain ViewCA United States Xerox Research Centre Europe Meylan France Accenture Centre for Innovation Dublin Ireland
Understanding expression of emotions in support forums has great value and NLP methods are key to automating this. Many approaches use subjective categories which are more fine-grained than a straightforward polarity-... 详细信息
来源: 评论
#WhoAmI in 160 Characters? Classifying Social Identities based on Twitter Profile Descriptions  1
#WhoAmI in 160 Characters? Classifying Social Identities Bas...
收藏 引用
EMNLP 2016 1st workshop on natural language processing and Computational Social Science, NLP + CSS 2016
作者: Priante, Anna Hiemstra, Djoerd Broek, Tijs Van Den Saeed, Aaqib Ehrenhard, Michel Need, Ariana Public Administation University of Twente Netherlands Database Group University of Twente Netherlands NIKOS University of Twente Netherlands Computer Science University of Twente Netherlands
We combine social theory and NLP methods to classify English-speaking Twitter users' online social identity in profile descriptions. We conduct two text classification experiments. In Experiment 1 we use a 5-categ... 详细信息
来源: 评论
Character based string kernels for bio-entity relation detection  15
Character based string kernels for bio-entity relation detec...
收藏 引用
15th workshop on Biomedical natural language processing, BioNLP 2016
作者: Singh, Ritambhara Qi, Yanjun Department of Computer Science University of Virginia Charlottesville United States
Extracting bio-entity relations has emerged as an important task due to the ever-growing number of bio-medical documents. In this paper, we present a simple and novel representation for extracting bio-entity relations... 详细信息
来源: 评论
The Effects of Data Collection methods in Twitter  1
The Effects of Data Collection Methods in Twitter
收藏 引用
EMNLP 2016 1st workshop on natural language processing and Computational Social Science, NLP + CSS 2016
作者: Kim, Sunghwan Mac Wan, Stephen Paris, Ćecile Jin, Brian Robinson, Bella Data61 Csiro Sydney Australia
There have been recent efforts to use social media to estimate demographic characteristics, such as age, gender or income, but there has been little work on investigating the effect of data acquisition methods on prod... 详细信息
来源: 评论
CORVIDAE: Coreference resolution visual development & analysis environment  12
CORVIDAE: Coreference resolution visual development & analys...
收藏 引用
12th Joint International Conference on Semantic Systems, SEMANTiCS 2016 and the 1st International workshop on Semantic Change and Evolving Semantics, SuCCESS 2016
作者: Möller, Nico Heidemann, Gunther Institute of Cognitive Science University of Osnabrück Osnabrück49069 Germany
Communication whether in verbal or written form is part of our daily life. Hence, we as humans have developed a set of skills that enable us to follow a discourse and extract important information from a text quite ea... 详细信息
来源: 评论
Bag of What? Simple Noun Phrase Extraction for Text Analysis  1
Bag of What? Simple Noun Phrase Extraction for Text Analysis
收藏 引用
EMNLP 2016 1st workshop on natural language processing and Computational Social Science, NLP + CSS 2016
作者: Handler, Abram Denny, Matthew J. Wallach, Hanna O'Connor, Brendan UMass Amherst United States Penn State United States Microsoft Research United States
Social scientists who do not have specialized natural language processing training often use a unigram bag-of-words (BOW) representation when analyzing text corpora. We offer a new phrase-based method, NPFST, for enri... 详细信息
来源: 评论
Twitter at the Grammys: A Social Media Corpus for Entity Linking and Disambiguation  4
Twitter at the Grammys: A Social Media Corpus for Entity Lin...
收藏 引用
4th ACM workshop on natural language processing for Social Media, SocialNLP 2016, associated with the Conference on Empirical methods in natural language processing, EMNLP 2016
作者: Dredze, Mark Andrews, Nicholas DeYoung, Jay Human Language Technology Center of Excellence Johns Hopkins University 810 Wyman Park Drive BaltimoreMD20211 United States
Work on cross document coreference resolution (CDCR) has primarily focused on news articles, with little to no work for social media. Yet social media may be particularly challenging since short messages provide littl... 详细信息
来源: 评论