咨询与建议

限定检索结果

文献类型

  • 2,111 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 2,128 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,690 篇 工学
    • 1,606 篇 计算机科学与技术...
    • 543 篇 软件工程
    • 225 篇 电气工程
    • 165 篇 控制科学与工程
    • 51 篇 生物医学工程(可授...
    • 50 篇 生物工程
    • 45 篇 信息与通信工程
    • 36 篇 石油与天然气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 机械工程
    • 15 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 14 篇 环境科学与工程(可...
    • 12 篇 动力工程及工程热...
    • 10 篇 土木工程
  • 850 篇 理学
    • 788 篇 数学
    • 137 篇 统计学(可授理学、...
    • 113 篇 生物学
    • 58 篇 系统科学
    • 17 篇 物理学
    • 14 篇 化学
  • 130 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 58 篇 工商管理
    • 44 篇 图书情报与档案管...
  • 56 篇 农学
    • 56 篇 作物学
  • 30 篇 医学
    • 30 篇 基础医学(可授医学...
    • 28 篇 临床医学
    • 28 篇 药学(可授医学、理...
  • 22 篇 法学
    • 21 篇 社会学
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 4 篇 教育学

主题

  • 362 篇 genetic programm...
  • 284 篇 genetic algorith...
  • 265 篇 evolutionary alg...
  • 130 篇 genetic algorith...
  • 125 篇 evolutionary com...
  • 61 篇 evolutionary alg...
  • 56 篇 machine learning
  • 53 篇 multiobjective o...
  • 52 篇 multi-objective ...
  • 44 篇 symbolic regress...
  • 36 篇 optimization
  • 35 篇 evolutionary rob...
  • 30 篇 benchmarking
  • 29 篇 feature selectio...
  • 25 篇 neural networks
  • 25 篇 genetic improvem...
  • 25 篇 combinatorial op...
  • 23 篇 neuroevolution
  • 21 篇 differential evo...
  • 20 篇 reinforcement le...

机构

  • 13 篇 michigan state u...
  • 10 篇 university of st...
  • 10 篇 johannes gutenbe...
  • 9 篇 victoria univ we...
  • 9 篇 univ zagreb fac ...
  • 9 篇 itmo univ st pet...
  • 9 篇 univ stirling st...
  • 9 篇 michigan state u...
  • 8 篇 poznan univ tech...
  • 8 篇 ucl england
  • 8 篇 university of tr...
  • 8 篇 univ complutense...
  • 8 篇 politecnico di t...
  • 8 篇 university of ex...
  • 8 篇 victoria univ we...
  • 7 篇 cinvestav ipn me...
  • 7 篇 victoria univ we...
  • 7 篇 silesian tech un...
  • 7 篇 ucl dept comp sc...
  • 7 篇 george mason uni...

作者

  • 54 篇 zhang mengjie
  • 35 篇 spector lee
  • 32 篇 xue bing
  • 25 篇 affenzeller mich...
  • 24 篇 o'reilly una-may
  • 22 篇 deb kalyanmoy
  • 21 篇 helmuth thomas
  • 21 篇 hemberg erik
  • 20 篇 rothlauf franz
  • 20 篇 kim yong-hyuk
  • 18 篇 iacca giovanni
  • 18 篇 tauritz daniel r...
  • 17 篇 neumann frank
  • 17 篇 wagner stefan
  • 15 篇 jakobovic domago...
  • 15 篇 lehre per kristi...
  • 14 篇 thierens dirk
  • 14 篇 mei yi
  • 14 篇 lalejini alexand...
  • 14 篇 doerr benjamin

语言

  • 1,973 篇 英文
  • 155 篇 其他
检索条件"任意字段=Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion"
2128 条 记 录,以下是51-60 订阅
排序:
Evaluation of genetic Algorithms in Multi-Vehicle Control for Multi-Target Tracking Applications
Evaluation of Genetic Algorithms in Multi-Vehicle Control fo...
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Blair, Aidan Khodadadian Gostar, Amirali Li, Xiaodong Bab-Hadiashar, Alireza Hoseinnezhad, Reza RMIT University MelbourneVIC Australia
Tracking multiple dynamic targets using a network of sensors is a challenging yet essential task in intelligent vehicles, that requires positioning the sensors in optimal locations to collect informative measurements ... 详细信息
来源: 评论
Energy Consumption Analysis of Batch Runs of evolutionary Algorithms
Energy Consumption Analysis of Batch Runs of Evolutionary Al...
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Cotta, Carlos Martínez-Cruz, Jesús ITIS Software Universidad de Málaga Málaga Spain Dept. Lenguajes y Ciencias de la Computación Universidad de Málaga Málaga Spain
We analyze the energy consumption of running evolutionary algorithms in batch as a function of the rest time between runs. It is shown that energy consumption can be reduced by 5%-8% by inserting short pauses between ... 详细信息
来源: 评论
Multi-Objective Evolution for Chemical Product Design
Multi-Objective Evolution for Chemical Product Design
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Nitschke, Geoff Aslan, Bilal Da Silva, Flavio Correa Department of Computer Science University of Cape Town Cape Town South Africa
The design of chemical products requires the optimization of desired properties in molecular structures. Traditional techniques are based on laboratory experimentation and are hindered by the intractable number of alt... 详细信息
来源: 评论
A Preliminary Counterfactual Explanation Method for genetic Programming-Evolved Rules: A Case Study on Uncertain Capacitated Arc Routing Problem
A Preliminary Counterfactual Explanation Method for Genetic ...
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Wang, Shaolin Mei, Yi Zhang, Mengjie Zhejiang Geely Holding Group Hangzhou China Victoria University of Wellington Wellington New Zealand
In this study, we propose a novel method to enhance the interpretability of genetic Programming Hyper-Heuristics (GPHH) by employing counterfactual explanations for genetic Programming (GP) evolved rules in dynamic st... 详细信息
来源: 评论
evolutionary Sparse Coding and Graph Regularisation for Embedded Multi-label Feature Selection
Evolutionary Sparse Coding and Graph Regularisation for Embe...
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Demir, Kaan Nguyen, Bach Xue, Bing Zhang, Mengjie Centre for Data Science and Artificial Intelligence School of ECS Victoria University of Wellington Wellington New Zealand
Multi-label datasets often possess hundreds of irrelevant or redundant features that can negatively affect classification performance over multiple co-occuring class labels, necessitating feature selection. Sparsity-b... 详细信息
来源: 评论
On Search Trajectory Networks for Graph genetic Programming
On Search Trajectory Networks for Graph Genetic Programming
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: De La Torre, Camilo Cussat-Blanc, Sylvain Wilson, Dennis G Lavinas, Yuri Université Toulouse Capitole IRIT CNRS UMR5505 Toulouse France ISAE-Supaero University of Toulouse Toulouse France CRCT - INSERM Toulouse France
Cartesian genetic Programming (CGP) allows for the optimization of interpretable function representations. However, comprehending the vast and combinatorially complex search space inherent to CGP remains challenging, ... 详细信息
来源: 评论
Guiding genetic Programming with Graph Neural Networks
Guiding Genetic Programming with Graph Neural Networks
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Wyrwiński, Piotr Krawiec, Krzysztof Poznan University of Technology Poznan Poland
In evolutionary computation, it is commonly assumed that a search algorithm acquires knowledge about a problem instance by sampling solutions from the search space and evaluating them with a fitness function. This is ... 详细信息
来源: 评论
DynStack Competition - Dynamic Stacking Optimization in Uncertain Environments
DynStack Competition - Dynamic Stacking Optimization in Unce...
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Karder, Johannes Leitner, Sebastian Werth, Bernhard Wagner, Stefan Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Upper Austria Hagenberg Austria Institute for Symbolic Artificial Intelligence Johannes Kepler University Linz Upper Austria Linz Austria
This 2-page extended abstract gives a short overview of the Dyn-Stack competition, which has been hosted at the genetic and evolutionary computation conference (GECCO) since 2020. The challenge is to generate optimize... 详细信息
来源: 评论
genetic Improvement: Taking real-world source code and improving it using computational search methods
Genetic Improvement: Taking real-world source code and impro...
收藏 引用
genetic and evolutionary computation conference (GECCO)
作者: Haraldsson, Saemundur O. Woodward, John R. Brownlee, Alexander Univ Stirling Stirling Scotland Univ Stirling Div Comp Sci & Math Stirling Scotland Loughborough Univ Loughborough Leics England Queen Mary Univ London Operat Res Grp London England
来源: 评论
An investigation on the use of Large Language Models for hyperparameter tuning in evolutionary Algorithms
An investigation on the use of Large Language Models for hyp...
收藏 引用
2024 genetic and evolutionary computation conference companion, GECCO 2024 companion
作者: Custode, Leonardo Lucio Caraffini, Fabio Yaman, Anil Iacca, Giovanni University of Trento Trento Italy Swansea University Swansea United Kingdom Vrije Universiteit Amsterdam Amsterdam Netherlands
Hyperparameter optimization is a crucial problem in evolutionary computation. In fact, the values of the hyperparameters directly impact the trajectory taken by the optimization process, and their choice requires exte... 详细信息
来源: 评论