咨询与建议

限定检索结果

文献类型

  • 1,327 篇 会议
  • 11 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 1,347 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 915 篇 工学
    • 757 篇 计算机科学与技术...
    • 498 篇 软件工程
    • 303 篇 信息与通信工程
    • 204 篇 电气工程
    • 175 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 107 篇 光学工程
    • 90 篇 控制科学与工程
    • 80 篇 电子科学与技术(可...
    • 58 篇 仪器科学与技术
    • 48 篇 机械工程
    • 35 篇 化学工程与技术
    • 28 篇 安全科学与工程
    • 26 篇 交通运输工程
  • 425 篇 理学
    • 189 篇 生物学
    • 187 篇 数学
    • 151 篇 物理学
    • 76 篇 统计学(可授理学、...
    • 54 篇 系统科学
    • 40 篇 化学
  • 169 篇 管理学
    • 106 篇 图书情报与档案管...
    • 72 篇 管理科学与工程(可...
    • 40 篇 工商管理
  • 146 篇 医学
    • 130 篇 临床医学
    • 88 篇 基础医学(可授医学...
    • 65 篇 药学(可授医学、理...
    • 24 篇 公共卫生与预防医...
  • 28 篇 教育学
    • 28 篇 教育学
  • 27 篇 法学
    • 21 篇 社会学
  • 18 篇 经济学
    • 17 篇 应用经济学
  • 16 篇 农学
  • 5 篇 军事学
  • 1 篇 文学
  • 1 篇 历史学

主题

  • 210 篇 machine learning
  • 134 篇 deep learning
  • 78 篇 signal processin...
  • 71 篇 accuracy
  • 70 篇 feature extracti...
  • 68 篇 signal processin...
  • 61 篇 support vector m...
  • 56 篇 machine learning...
  • 45 篇 predictive model...
  • 33 篇 neural networks
  • 32 篇 convolutional ne...
  • 31 篇 random forests
  • 29 篇 computational mo...
  • 29 篇 training
  • 26 篇 natural language...
  • 25 篇 prediction algor...
  • 21 篇 technological in...
  • 20 篇 real-time system...
  • 19 篇 adversarial mach...
  • 18 篇 image processing

机构

  • 16 篇 chitkara centre ...
  • 14 篇 centre of resear...
  • 12 篇 shenyang ligong ...
  • 6 篇 chitkara univers...
  • 6 篇 ai & ds vishwaka...
  • 6 篇 school of inform...
  • 5 篇 department of me...
  • 5 篇 khulna universit...
  • 5 篇 department of co...
  • 4 篇 delhi technologi...
  • 4 篇 heilongjiang uni...
  • 4 篇 department of s&...
  • 4 篇 beijing univ pos...
  • 4 篇 it vishwakarma i...
  • 4 篇 chitkara univers...
  • 4 篇 sri lanka instit...
  • 4 篇 advanced telecom...
  • 4 篇 shenyang ligong ...
  • 4 篇 graduate school ...
  • 3 篇 karunya institut...

作者

  • 6 篇 mehta shiva
  • 5 篇 rasmita panigrah...
  • 4 篇 neelamadhab padh...
  • 4 篇 wang xin
  • 3 篇 m. vigenesh
  • 3 篇 baydeti nagaraju
  • 3 篇 sinambela marzuk...
  • 3 篇 santosh kumar sh...
  • 3 篇 ganapati panda
  • 3 篇 debendra muduli
  • 3 篇 abujar sheikh
  • 3 篇 a. sivanantham
  • 3 篇 li yajie
  • 3 篇 li aihua
  • 3 篇 zhou feng
  • 3 篇 islam md. sanzid...
  • 2 篇 aira kharvel par...
  • 2 篇 nokshangthemba
  • 2 篇 maheswara rao v ...
  • 2 篇 lee tzong-ru

语言

  • 1,271 篇 英文
  • 67 篇 其他
  • 11 篇 中文
检索条件"任意字段=Proceedings of the 2019 2nd International Conference on Signal Processing and Machine Learning"
1347 条 记 录,以下是681-690 订阅
排序:
Towards a Recommended Documentation System Using Data Traceability and machine learning in a Big Data Environment  2nd
Towards a Recommended Documentation System Using Data Tracea...
收藏 引用
2nd international conference on Advanced Intelligent Systems for Sustainable Development, AI2SD 2019
作者: Rahmaoui, Othmane Souali, Kamal Ouzzif, Mohammed ESTC RITM Lab ENSEM CED Hassan II University Casablanca Morocco
In this article we describe our recommended documentation system, which allows organizations to take the information adapted to their objectives with a search engine set, in order to make results and prepare reports a... 详细信息
来源: 评论
Analyzing Social Media Opinions Using Hybrid machine learning Model Based on Artificial Neural Network Optimized by Particle Swarm Optimization  1
收藏 引用
2nd international conference on Advanced Intelligent Systems for Sustainable Development, AI2SD 2019
作者: Khourdifi, Youness Bahaj, Mohamed Faculty of Sciences and Techniques Hassan 1st University Settat Morocco
Sentiment Analysis (SA) is one of the concepts of Natural Language processing, also called Opinion Mining. This area of computer science is used to extract the feeling of a text to give useful information about the au... 详细信息
来源: 评论
Model of Sentiment Analysis with Deep learning in Social Network Environment  2
Model of Sentiment Analysis with Deep Learning in Social Net...
收藏 引用
IEEE 2nd international conference on Electronic Information and Communication Technology (ICEICT)
作者: Wanda, Putra Huang JinJie Univ Respati Yogyakarta Fac Sci & Technol Yogyakarta 55281 Indonesia Harbin Univ Sci & Technol Sch Automat Engn Harbin Peoples R China
Currently, the digital environment such as social network needs real-time and adaptive security model. Deep learning is becoming increasingly popular for various applications. In this research, we proposed a Dynamic D... 详细信息
来源: 评论
Validation Feedback based Image Transfer Network for Data Augmentation  2
Validation Feedback based Image Transfer Network for Data Au...
收藏 引用
2nd international conference on Video, signal and Image processing, VSIP 2020
作者: Chen, Weili Kamata, Seiichiro Sun, Zitang Waseda University Japan
Modern image classifiers are often suffering over-fitting problems because of the insufficient number of images in the dataset. Data augmentation is a strategy to increase the number of training samples. However, rece... 详细信息
来源: 评论
Human Pose Estimation and Activity Classification Using machine learning Approach  1
收藏 引用
2nd international conference on Soft Computing and signal processing, ICSCSP 2019
作者: Arunnehru, J. Nandhana Davi, A.K. Sharan, R. Raghul Nambiar, Poornima G. Department of Computer Science and Engineering SRM Institute of Science and Technology Vadapalani Campus ChennaiTamil Nadu India
Human pose estimation is mainly used for the purpose of training the robots to incorporate in a way which the actions are performed in reality. The human pose estimation is the highly exploring topic in the ... 详细信息
来源: 评论
Age Group Estimation from Human Iris  2nd
Age Group Estimation from Human Iris
收藏 引用
2nd international conference on Soft Computing and signal processing, ICSCSP 2019
作者: Rajput, Minakshi R. Sable, Ganesh S. NIELIT Dr. B.A.M. University AurangabadMH India Maharashtra Institute of Technology Dr. B.A.M. University AurangabadMH India
The paper presents the approach to determine the age group of a person from an iris structure using less number of features. The performance of a proposed method is evaluated based on five different classifiers. Our m... 详细信息
来源: 评论
Vehicle Type Classification Using Deep learning  2nd
Vehicle Type Classification Using Deep Learning
收藏 引用
2nd international conference on Soft Computing and signal processing, ICSCSP 2019
作者: Bhujbal, Avinash Mane, D.T. Department of Computer Engineering PICT Pune India
As the rate of data generation is growing rapidly which can be from a number of sources. Information collected can be used for and processed for its commercial or business value. Here, one of the characteristics is th... 详细信息
来源: 评论
machine learning on Biomedical Images: Interactive learning, Transfer learning, Class Imbalance, and Beyond  2
Machine Learning on Biomedical Images: Interactive Learning,...
收藏 引用
2nd IEEE international conference on Multimedia Information processing and Retrieval (MIPR)
作者: Khan, Naimul Mefraz Abraham, Nabila Hon, Marcia Guan, Ling Ryerson Univ Ryerson Multimedia Res Lab Toronto ON Canada
In this paper, we highlight three issues that limit performance of machine learning on biomedical images, and tackle them through 3 case studies: 1) Interactive machine learning (IML): we show how IML can drastically ... 详细信息
来源: 评论
Performance Comparison of machine learning Algorithms for Classification of Chronic Kidney Disease (CKD)  2
Performance Comparison of Machine Learning Algorithms for Cl...
收藏 引用
2nd Joint international conference on Emerging Computing Technology and Sports, JICETS 2019
作者: Abdullah, Azian Azamimi Hafidz, Syazwani Adli Khairunizam, Wan School of Mechatronic Engineering Universiti Malaysia Perlis Pauh Putra Campus Arau-Perlis02600 Malaysia
Kidney is one of the vital organs in a human body while ironically, chronic kidney disease (CKD) is one of the main causes of death in the world. Due to the low rate of loss of kidney function, the disease is often ov... 详细信息
来源: 评论
Multi-static Active Sonar Target Recognition Method Based on Bionic signal  2
Multi-static Active Sonar Target Recognition Method Based on...
收藏 引用
2nd IEEE international conference on Information Communication and signal processing (ICICSP)
作者: Liu, Jiheng Zhou, Zemin Zeng, Xinwu Natl Univ Def Technol Coll Meteorol & Oceanog Changsha Peoples R China
In modern sonar systems, automatic recognition of underwater targets has always been one of the key technologies in research. In recent years, classification and recognition methods based on machine learning have been... 详细信息
来源: 评论