咨询与建议

限定检索结果

文献类型

  • 1,327 篇 会议
  • 11 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 1,347 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 915 篇 工学
    • 757 篇 计算机科学与技术...
    • 497 篇 软件工程
    • 304 篇 信息与通信工程
    • 205 篇 电气工程
    • 175 篇 生物工程
    • 127 篇 生物医学工程(可授...
    • 107 篇 光学工程
    • 90 篇 控制科学与工程
    • 80 篇 电子科学与技术(可...
    • 58 篇 仪器科学与技术
    • 48 篇 机械工程
    • 35 篇 化学工程与技术
    • 28 篇 安全科学与工程
    • 26 篇 交通运输工程
  • 425 篇 理学
    • 189 篇 生物学
    • 187 篇 数学
    • 151 篇 物理学
    • 76 篇 统计学(可授理学、...
    • 54 篇 系统科学
    • 40 篇 化学
  • 170 篇 管理学
    • 106 篇 图书情报与档案管...
    • 73 篇 管理科学与工程(可...
    • 40 篇 工商管理
  • 146 篇 医学
    • 130 篇 临床医学
    • 88 篇 基础医学(可授医学...
    • 65 篇 药学(可授医学、理...
    • 24 篇 公共卫生与预防医...
  • 28 篇 教育学
    • 28 篇 教育学
  • 27 篇 法学
    • 21 篇 社会学
  • 18 篇 经济学
    • 17 篇 应用经济学
  • 16 篇 农学
  • 5 篇 军事学
  • 1 篇 文学
  • 1 篇 历史学

主题

  • 211 篇 machine learning
  • 134 篇 deep learning
  • 78 篇 signal processin...
  • 72 篇 accuracy
  • 71 篇 feature extracti...
  • 68 篇 signal processin...
  • 61 篇 support vector m...
  • 57 篇 machine learning...
  • 46 篇 predictive model...
  • 33 篇 neural networks
  • 32 篇 convolutional ne...
  • 31 篇 random forests
  • 29 篇 computational mo...
  • 29 篇 training
  • 26 篇 natural language...
  • 26 篇 prediction algor...
  • 21 篇 technological in...
  • 20 篇 real-time system...
  • 19 篇 adversarial mach...
  • 18 篇 image processing

机构

  • 16 篇 chitkara centre ...
  • 14 篇 centre of resear...
  • 12 篇 shenyang ligong ...
  • 6 篇 chitkara univers...
  • 6 篇 ai & ds vishwaka...
  • 6 篇 school of inform...
  • 5 篇 department of me...
  • 5 篇 khulna universit...
  • 5 篇 department of co...
  • 4 篇 delhi technologi...
  • 4 篇 heilongjiang uni...
  • 4 篇 department of s&...
  • 4 篇 beijing univ pos...
  • 4 篇 it vishwakarma i...
  • 4 篇 chitkara univers...
  • 4 篇 department of co...
  • 4 篇 sri lanka instit...
  • 4 篇 advanced telecom...
  • 4 篇 shenyang ligong ...
  • 4 篇 graduate school ...

作者

  • 6 篇 mehta shiva
  • 5 篇 rasmita panigrah...
  • 4 篇 neelamadhab padh...
  • 4 篇 wang xin
  • 3 篇 m. vigenesh
  • 3 篇 baydeti nagaraju
  • 3 篇 sinambela marzuk...
  • 3 篇 santosh kumar sh...
  • 3 篇 ganapati panda
  • 3 篇 debendra muduli
  • 3 篇 abujar sheikh
  • 3 篇 a. sivanantham
  • 3 篇 li yajie
  • 3 篇 li aihua
  • 3 篇 zhou feng
  • 3 篇 islam md. sanzid...
  • 2 篇 aira kharvel par...
  • 2 篇 nokshangthemba
  • 2 篇 maheswara rao v ...
  • 2 篇 lee tzong-ru

语言

  • 1,273 篇 英文
  • 65 篇 其他
  • 11 篇 中文
检索条件"任意字段=Proceedings of the 2019 2nd International Conference on Signal Processing and Machine Learning"
1347 条 记 录,以下是941-950 订阅
排序:
BioWolf: A Sub-10-mW 8-Channel Advanced Brain-Computer Interface Platform With a Nine-Core Processor and BLE Connectivity
收藏 引用
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS And SYSTEMS 2019年 第5期13卷 893-906页
作者: Kartsch, Victor Tagliavini, Giuseppe Guermandi, Marco Benatti, Simone Rossi, Davide Benini, Luca Univ Bologna Dept Elect Elect & Informat Engn I-40126 Bologna Italy Swiss Fed Inst Technol Integrated Syst Lab CH-8092 Zurich Switzerland
Advancements in digital signal processing (DSP) and machine learning techniques have boosted the popularity of brain-computer interfaces (BCIs), where electroencephalography is a widely accepted method to enable intui... 详细信息
来源: 评论
Doodle Recognition using machine learning for hearing and speech-impaired people
Doodle Recognition using machine learning for hearing and sp...
收藏 引用
international conference on signal processing and Communication (ICSPC)
作者: Evangelyn D Monica Praharsha Davu Cynthia P Caroline D.J Jagannath Karunya Institute of Technology and sciences Coimbatore India
In this paper, we test the different classifiers used in machine learning and compare the different accuracies for the doodles which are obtained from Google's Quick Draw Dataset. The classifier with the best accu...
来源: 评论
Deep learning Approach to Semantic Segmentation in 3D Point Cloud Intra-oral Scans of Teeth  2
Deep Learning Approach to Semantic Segmentation in 3D Point ...
收藏 引用
2nd international conference on Medical Imaging with Deep learning (MIDL)
作者: Zanjani, Farhad Ghazvinian Moin, David Anssari Verheij, Bas Claessen, Frank Cherici, Teo Tan, Tao de With, Peter H. N. Eindhoven Univ Technol NL-5600 MB Eindhoven Netherlands Promaton Inc NL-1076 GR Amsterdam Netherlands
Accurate segmentation of data, derived from intra-oral scans (IOS), is a crucial step in a computer-aided design (CAD) system for many clinical tasks, such as implantology and orthodontics in modern dentistry. In orde... 详细信息
来源: 评论
The Application of Transfer learning in Film and Television Works  2
The Application of Transfer Learning in Film and Television ...
收藏 引用
2nd international conference on Image and Video processing, and Artificial Intelligence (IPVAI)
作者: Lian, Bihan Jin, Cong Wang, Nansu Li, Yajie Wang, Hongliang Commun Univ China Sch Comp & Cyberspace Secur Beijing 100024 Peoples R China Commun Univ China Sch Informat & Commun Engn Beijing 100024 Peoples R China Commun Univ China Advertising Sch Beijing 100024 Peoples R China
Many personalized advertisement recommendation studies suffer from the problem of only certain tagged items can be recommended in video playback, which mean it can't recommend more produces to users that they real... 详细信息
来源: 评论
Anomaly Detection for Water Supply Data using machine learning Technique  2
Anomaly Detection for Water Supply Data using Machine Learni...
收藏 引用
2nd international conference on Computer Information Science and Application Technology, CISAT 2019
作者: Fang, Shu Sun, Weize Huang, Lei College of Electronics and Information Engineering Shenzhen University China
The advent of the era of big data brings new challenges and opportunities to water data processing. Abnormal detection or authenticity verification of water supply data becomes an urgent problem in natural resource da... 详细信息
来源: 评论
IEEE international conference on Intelligent Techniques in Control, Optimization and signal processing, INCOS 2019
IEEE International Conference on Intelligent Techniques in C...
收藏 引用
2019 IEEE international conference on Intelligent Techniques in Control, Optimization and signal processing, INCOS 2019
The proceedings contain 123 papers. The topics discussed include: advanced logic level design methodology for a secure DPA resistant FPGA;evaluation of charge density and sheet carrier concentration in the 2DEG area o...
来源: 评论
Deep learning Assisted Smart Glasses as Educational Aid for Visually Challenged Students  2
Deep Learning Assisted Smart Glasses as Educational Aid for ...
收藏 引用
2nd international conference on New Trends in Computing Sciences (ICTCS)
作者: AlSaid, Hawra AlKhatib, Lina AlOraidh, Aqeela AlHaidar, Shoaa Bashar, Abul Prince Mohammad Bin Fahd Univ Coll Comp Engn & Sci Al Khobar 31952 Saudi Arabia
Computer Vision Technology has played a significant role in assisting visually challenged people to carry out their day to day activities without much dependency on other people. Smart glasses in one such solution whi... 详细信息
来源: 评论
Adaptation of the residual signal for filter failure detection in scenarios with multiple filter types  21
Adaptation of the residual signal for filter failure detecti...
收藏 引用
21st international conference on Transparent Optical Networks, ICTON 2019
作者: Barzegar, Sima Ruiz, Marc Velasco, Luis Barcelona Spain
To monitor the optical spectra of outgoing links, Optical Spectrum Analyzers (OSA) can deployed in the optical nodes acquiring the optical spectra of outgoing links and analyzing optical signals to detect those soft-f... 详细信息
来源: 评论
Generating Context-Free Group-Level Emotion Landscapes Using Image processing and Shallow Convolutional Neural Networks  2nd
Generating Context-Free Group-Level Emotion Landscapes Using...
收藏 引用
2nd international conference on Computing Analytics and Networking, ICCAN 2019
作者: Tribedi, Sabyasachi Barai, Ranjit Kumar Department of Electrical Engineering Jadavpur University Kolkata India
Emotion recognition is an integral part of any Human–machine Interaction (HMI) system. Proper emotion recognition allows for HMI systems to choose the successive appropriate responses, given context and the emotion e... 详细信息
来源: 评论
ASU at TextGraphs 2019 shared task: Explanation regeneration using language models and iterative re-ranking  13
ASU at TextGraphs 2019 shared task: Explanation regeneration...
收藏 引用
13th Workshop on Graph-Based Methods for Natural Language processing, TextGraphs 2019, in conjunction with the 2019 conference on Empirical Methods in Natural Language processing and 9th international Joint conference on Natural Language processing, EMNLP-IJCNLP 2019
作者: Banerjee, Pratyay School of Computing Informatics and Decision Systems Engineering Arizona State University United States
In this work we describe the system from Natural Language processing group at Arizona State University for the TextGraphs 2019 Shared Task. The task focuses on Explanation Regeneration, an intermediate step towards ge... 详细信息
来源: 评论