In this paper, we tackle the challenge of three-dimensional estimation of expressive, animatable, and textured human avatars from a single frontal image. Leveraging a Skinned Multi-Person Linear (SMPL) parametric body...
详细信息
ISBN:
(纸本)9798400710902
In this paper, we tackle the challenge of three-dimensional estimation of expressive, animatable, and textured human avatars from a single frontal image. Leveraging a Skinned Multi-Person Linear (SMPL) parametric body, we adjust the model parameters to faithfully reflect the shape and pose of the individual, relying on the mesh generated by a Pixel-aligned Implicit Function (PIFu) model. To robustly infer the SMPL parameters, we deploy a multi-step optimization process. Initially, we recover the position of 2D joints using an existing pose estimation tool. Subsequently, we utilize the 3D PIFu mesh together with the 2D pose to estimate the 3D position of joints. In the subsequent step, we adapt the body's parametric model to the 3D joints through rigid alignment, optimizing for global translation and rotation. This step provides a robust initialization for further refinement of shape and pose parameters. The next step involves optimizing the pose and the first component of the SMPL shape parameters while imposing constraints to enhance model robustness. We then refine the SMPL model pose and shape parameters by adding two new registration loss terms to the optimization cost function: a point-to-surface distance and a Chamfer distance. Finally, we introduce a refinement process utilizing a deformation vector field applied to the SMPL mesh, enabling more faithful modeling of tight to loose clothing geometry. A notable advantage of our approach is the ability to generate detailed avatars with fewer vertices compared to previous research, enhancing computational efficiency while maintaining high fidelity. To complete our model, we design a texture extraction and completion approach. Our entirely automated approach was evaluated against recognized benchmarks, X-Avatar and PeopleSnapshot, showcasing competitive performance against state-of-the-art methods. This approach contributes to advancing 3D modeling techniques, particularly in the realms of interactive applications,
Differentiable rendering is a key ingredient for inverse rendering and machine learning, as it allows to optimize scene parameters (shape, materials, lighting) to best fit target images. Differentiable rendering requi...
详细信息
ISBN:
(纸本)9798400711312
Differentiable rendering is a key ingredient for inverse rendering and machine learning, as it allows to optimize scene parameters (shape, materials, lighting) to best fit target images. Differentiable rendering requires that each scene parameter relates to pixel values through differentiable operations. While 3D mesh rendering algorithms have been implemented in a differentiable way, these algorithms do not directly extend to Constructive-Solid-Geometry (CSG), a popular parametric representation of shapes, because the underlying boolean operations are typically performed with complex black-box mesh-processing libraries. We present an algorithm, DiffCSG, to render CSG models in a differentiable manner. Our algorithm builds upon CSG rasterization, which displays the result of boolean operations between primitives without explicitly computing the resulting mesh and, as such, bypasses black-box mesh processing. We describe how to implement CSG rasterization within a differentiable rendering pipeline, taking special care to apply antialiasing along primitive intersections to obtain gradients in such critical areas. Our algorithm is simple and fast, can be easily incorporated into modern machine learning setups, and enables a range of applications for computer-aided design, including direct and image-based editing of CSG primitives. Code and data: https://***/DiffCSG/.
Ambient occlusion (AO) is a popular rendering technique that enhances depth perception and realism by darkening locations that are less exposed to ambient light (e.g., corners and creases). In real-time applications, ...
详细信息
Ambient occlusion (AO) is a popular rendering technique that enhances depth perception and realism by darkening locations that are less exposed to ambient light (e.g., corners and creases). In real-time applications, screen-space variants, relying on the depth buffer, are used due to their high performance and good visual quality. However, these only take visible surfaces into account, resulting in inconsistencies, especially during motion. Stochastic-Depth Ambient Occlusion is a novel AO algorithm that accounts for occluded geometry by relying on a stochastic depth map, capturing multiple scene layers per pixel at random. Hereby, we efficiently gather missing information in order to improve upon the accuracy and spatial stability of conventional screen-space approximations, while maintaining real-time performance. Our approach integrates well into existing rendering pipelines and improves the robustness of many different AO techniques, including multi-view solutions.
We describe the implementation of a prototype system of 3D holographic sign language interpreters. The signing avatars, observed through wearable Mixed Reality (MR) smartglasses (e.g., Microsoft HoloLens), translate s...
详细信息
Photo restoration technology enables preserving visual memories in photographs. However, physical prints are vulnerable to various forms of deterioration, ranging from physical damage to loss of image quality, etc. Wh...
详细信息
ISBN:
(纸本)9798400704369
Photo restoration technology enables preserving visual memories in photographs. However, physical prints are vulnerable to various forms of deterioration, ranging from physical damage to loss of image quality, etc. While restoration by human experts can improve the quality of outcomes, it often comes at a high price in terms of cost and time for restoration. In this work, we present the AI-based photo restoration framework composed of multiple stages, where each stage is tailored to enhance and restore specific types of photo damage, accelerating and automating the photo restoration process. By integrating these techniques into a unified architecture, our framework aims to offer a one-stop solution for restoring old and deteriorated photographs. Furthermore, we present a novel old photo restoration dataset because we lack a publicly available dataset for our evaluation.
暂无评论