咨询与建议

限定检索结果

文献类型

  • 7,585 篇 会议
  • 71 册 图书
  • 49 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 7,706 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 6,483 篇 工学
    • 6,256 篇 计算机科学与技术...
    • 3,577 篇 软件工程
    • 748 篇 信息与通信工程
    • 535 篇 控制科学与工程
    • 272 篇 电气工程
    • 212 篇 生物工程
    • 121 篇 化学工程与技术
    • 100 篇 机械工程
    • 86 篇 电子科学与技术(可...
    • 74 篇 生物医学工程(可授...
    • 63 篇 安全科学与工程
    • 59 篇 农业工程
    • 57 篇 交通运输工程
    • 49 篇 网络空间安全
  • 1,522 篇 管理学
    • 1,165 篇 图书情报与档案管...
    • 467 篇 管理科学与工程(可...
    • 134 篇 工商管理
  • 1,471 篇 文学
    • 1,464 篇 外国语言文学
    • 161 篇 中国语言文学
  • 1,446 篇 理学
    • 776 篇 数学
    • 352 篇 物理学
    • 249 篇 生物学
    • 240 篇 统计学(可授理学、...
    • 120 篇 化学
    • 101 篇 系统科学
  • 164 篇 法学
    • 153 篇 社会学
  • 129 篇 医学
    • 93 篇 临床医学
    • 75 篇 基础医学(可授医学...
  • 111 篇 教育学
    • 105 篇 教育学
  • 68 篇 农学
    • 68 篇 作物学
  • 42 篇 经济学
  • 6 篇 哲学
  • 3 篇 艺术学
  • 1 篇 军事学

主题

  • 1,181 篇 natural language...
  • 872 篇 computational li...
  • 619 篇 natural language...
  • 283 篇 semantics
  • 165 篇 natural language...
  • 128 篇 machine learning
  • 127 篇 graphic methods
  • 123 篇 iterative method...
  • 111 篇 sentiment analys...
  • 110 篇 speech recogniti...
  • 105 篇 deep learning
  • 94 篇 syntactics
  • 90 篇 text processing
  • 86 篇 speech processin...
  • 81 篇 embeddings
  • 72 篇 information retr...
  • 69 篇 modeling languag...
  • 69 篇 artificial intel...
  • 66 篇 contrastive lear...
  • 63 篇 zero-shot learni...

机构

  • 74 篇 carnegie mellon ...
  • 36 篇 national univers...
  • 34 篇 carnegie mellon ...
  • 34 篇 language technol...
  • 34 篇 institute for na...
  • 33 篇 university of wa...
  • 33 篇 school of comput...
  • 32 篇 tsinghua univers...
  • 31 篇 university of ch...
  • 30 篇 nanyang technolo...
  • 30 篇 stanford univers...
  • 29 篇 zhejiang univers...
  • 27 篇 alibaba grp peop...
  • 26 篇 gaoling school o...
  • 26 篇 carnegie mellon ...
  • 25 篇 harbin institute...
  • 25 篇 peking universit...
  • 25 篇 natl univ singap...
  • 24 篇 allen inst artif...
  • 23 篇 the chinese univ...

作者

  • 42 篇 neubig graham
  • 39 篇 zhou guodong
  • 39 篇 smith noah a.
  • 36 篇 liu yang
  • 36 篇 lapata mirella
  • 34 篇 sun maosong
  • 32 篇 zhang min
  • 30 篇 liu qun
  • 30 篇 hovy eduard
  • 29 篇 zhao jun
  • 27 篇 schütze hinrich
  • 27 篇 liu zhiyuan
  • 26 篇 gurevych iryna
  • 25 篇 vulic ivan
  • 22 篇 huang xuanjing
  • 21 篇 chang kai-wei
  • 21 篇 liu kang
  • 21 篇 zhang yue
  • 21 篇 zhang qi
  • 20 篇 wen ji-rong

语言

  • 6,955 篇 英文
  • 722 篇 其他
  • 23 篇 中文
  • 8 篇 法文
  • 4 篇 土耳其文
  • 2 篇 德文
  • 2 篇 俄文
检索条件"任意字段=Proceedings of the Conference on Empirical Methods in Natural Language Processing"
7707 条 记 录,以下是211-220 订阅
排序:
Ling-CL: Understanding NLP Models through Linguistic Curricula
Ling-CL: Understanding NLP Models through Linguistic Curricu...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Elgaar, Mohamed Amiri, Hadi Univ Massachusetts Lowell Lowell MA 01854 USA
We employ a characterization of linguistic complexity from psycholinguistic and language acquisition research to develop data-driven curricula to understand the underlying linguistic knowledge that models learn to add... 详细信息
来源: 评论
Searching for Best Practices in Retrieval-Augmented Generation
Searching for Best Practices in Retrieval-Augmented Generati...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Wang, Xiaohua Wang, Zhenghua Gao, Xuan Zhang, Feiran Wu, Yixin Xu, Zhibo Shi, Tianyuan Wang, Zhengyuan Li, Shizheng Qian, Qi Yin, Ruicheng Lv, Changze Zheng, Xiaoqing Huang, Xuanjing School of Computer Science Fudan University Shanghai Key Laboratory of Intelligent Information Processing Shanghai China
Retrieval-augmented generation (RAG) techniques have proven to be effective in integrating up-to-date information, mitigating hallucinations, and enhancing response quality, particularly in specialized domains. While ... 详细信息
来源: 评论
Using Interpretation methods for Model Enhancement
Using Interpretation Methods for Model Enhancement
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Chen, Zhuo Jiang, Chengyue Tu, Kewei ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China
In the age of neural natural language processing, there are plenty of works trying to derive interpretations of neural models. Intuitively, when gold rationales exist during training, one can additionally train the mo... 详细信息
来源: 评论
Effective Demonstration Annotation for In-Context Learning via language Model-Based Determinantal Point Process
Effective Demonstration Annotation for In-Context Learning v...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Wang, Peng Wang, Xiaobin Lou, Chao Mao, Shengyu Xie, Pengjun Jiang, Yong Zhejiang University China Alibaba Group China ShanghaiTech University China
In-context learning (ICL) is a few-shot learning paradigm that involves learning mappings through input-output pairs and appropriately applying them to new instances. Despite the remarkable ICL capabilities demonstrat... 详细信息
来源: 评论
Verification and Refinement of natural language Explanations through LLM-Symbolic Theorem Proving
Verification and Refinement of Natural Language Explanations...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Quan, Xin Valentino, Marco Dennis, Louise A. Freitas, André Department of Computer Science University of Manchester United Kingdom Idiap Research Institute Switzerland National Biomarker Centre CRUK-MI University of Manchester United Kingdom
natural language explanations represent a proxy for evaluating explanation-based and multi-step natural language Inference (NLI) models. However, assessing the validity of explanations for NLI is challenging as it typ... 详细信息
来源: 评论
On the Relationship between Truth and Political Bias in language Models
On the Relationship between Truth and Political Bias in Lang...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Fulay, Suyash Brannon, William Mohanty, Shrestha Overney, Cassandra Poole-Dayan, Elinor Roy, Deb Kabbara, Jad MIT Center for Constructive Communication MIT Media Lab United States
language model alignment research often attempts to ensure that models are not only helpful and harmless, but also truthful and unbiased. However, optimizing these objectives simultaneously can obscure how improving o...
来源: 评论
Self-Bootstrapped Visual-language Model for Knowledge Selection and Question Answering
Self-Bootstrapped Visual-Language Model for Knowledge Select...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Hao, Dongze Wang, Qunbo Guo, Longteng Jiang, Jie Liu, Jing Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China
While large visual-language models (LVLM) have shown promising results on traditional visual question answering benchmarks, it is still challenging for them to answer complex VQA problems which requires diverse world ... 详细信息
来源: 评论
A Free Verbalization Method of Evaluating Sound Design The Effectiveness of Artificially Intelligent natural language processing methods and Tools  23
A Free Verbalization Method of Evaluating Sound Design The E...
收藏 引用
18th International Audio Mostly conference (AM) - Embodied Sound in the Virtual
作者: Collins, K. C. Johnston, Hannah Carleton Univ Sch Informat Technol Ottawa ON Canada
Research on sound design evaluation methodologies relating to connotation, or the evocation of mental imagery is limited. Prior tools for data analysis have fallen short, making the process time-consuming and difficul... 详细信息
来源: 评论
Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions
Advancing Social Intelligence in AI Agents: Technical Challe...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Mathur, Leena Liang, Paul Pu Morency, Louis-Philippe Language Technologies Institute School of Computer Science Carnegie Mellon University United States Machine Learning Department School of Computer Science Carnegie Mellon University United States
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal that involves creating agents that can sense, perceive, reason about, learn from, and respond to affect, behavior, a... 详细信息
来源: 评论
COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large language Models to Online Communities
COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generatio...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: He, Zihao Chu, Minh Duc Dorn, Rebecca Guo, Siyi Lerman, Kristina USC Information Sciences Institute United States
Social scientists use surveys to probe the opinions and beliefs of populations, but these methods are slow, costly, and prone to biases. Recent advances in large language models (LLMs) enable the creation of computati... 详细信息
来源: 评论