咨询与建议

限定检索结果

文献类型

  • 7,589 篇 会议
  • 71 册 图书
  • 49 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 7,709 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 6,491 篇 工学
    • 6,263 篇 计算机科学与技术...
    • 3,536 篇 软件工程
    • 732 篇 信息与通信工程
    • 493 篇 控制科学与工程
    • 272 篇 电气工程
    • 213 篇 生物工程
    • 119 篇 化学工程与技术
    • 99 篇 机械工程
    • 84 篇 电子科学与技术(可...
    • 76 篇 生物医学工程(可授...
    • 63 篇 安全科学与工程
    • 59 篇 农业工程
    • 57 篇 交通运输工程
    • 49 篇 网络空间安全
  • 1,538 篇 文学
    • 1,531 篇 外国语言文学
    • 146 篇 中国语言文学
  • 1,486 篇 管理学
    • 1,142 篇 图书情报与档案管...
    • 453 篇 管理科学与工程(可...
    • 130 篇 工商管理
  • 1,423 篇 理学
    • 758 篇 数学
    • 350 篇 物理学
    • 247 篇 生物学
    • 239 篇 统计学(可授理学、...
    • 119 篇 化学
    • 100 篇 系统科学
  • 161 篇 法学
    • 149 篇 社会学
  • 128 篇 医学
    • 93 篇 临床医学
    • 75 篇 基础医学(可授医学...
  • 111 篇 教育学
    • 105 篇 教育学
  • 68 篇 农学
    • 68 篇 作物学
  • 39 篇 经济学
  • 6 篇 哲学
  • 3 篇 艺术学
  • 1 篇 军事学

主题

  • 1,184 篇 natural language...
  • 870 篇 computational li...
  • 623 篇 natural language...
  • 283 篇 semantics
  • 165 篇 natural language...
  • 128 篇 machine learning
  • 127 篇 graphic methods
  • 123 篇 iterative method...
  • 111 篇 sentiment analys...
  • 110 篇 speech recogniti...
  • 107 篇 deep learning
  • 94 篇 syntactics
  • 90 篇 text processing
  • 86 篇 speech processin...
  • 81 篇 embeddings
  • 73 篇 information retr...
  • 69 篇 modeling languag...
  • 69 篇 artificial intel...
  • 66 篇 contrastive lear...
  • 63 篇 zero-shot learni...

机构

  • 74 篇 carnegie mellon ...
  • 35 篇 institute for na...
  • 34 篇 national univers...
  • 34 篇 language technol...
  • 33 篇 carnegie mellon ...
  • 33 篇 school of comput...
  • 31 篇 tsinghua univers...
  • 31 篇 university of wa...
  • 31 篇 university of ch...
  • 29 篇 stanford univers...
  • 28 篇 zhejiang univers...
  • 28 篇 alibaba grp peop...
  • 27 篇 nanyang technolo...
  • 27 篇 carnegie mellon ...
  • 27 篇 natl univ singap...
  • 25 篇 gaoling school o...
  • 25 篇 peking universit...
  • 24 篇 allen inst artif...
  • 24 篇 harbin institute...
  • 23 篇 stanford univ st...

作者

  • 42 篇 neubig graham
  • 39 篇 zhou guodong
  • 39 篇 smith noah a.
  • 36 篇 liu yang
  • 36 篇 lapata mirella
  • 34 篇 sun maosong
  • 32 篇 zhang min
  • 30 篇 liu qun
  • 30 篇 hovy eduard
  • 30 篇 huang xuanjing
  • 29 篇 zhao jun
  • 29 篇 gurevych iryna
  • 27 篇 schütze hinrich
  • 27 篇 liu zhiyuan
  • 24 篇 vulic ivan
  • 21 篇 chang kai-wei
  • 20 篇 wen ji-rong
  • 20 篇 zhang yue
  • 20 篇 korhonen anna
  • 20 篇 zhang qi

语言

  • 6,739 篇 英文
  • 941 篇 其他
  • 26 篇 中文
  • 8 篇 法文
  • 4 篇 土耳其文
  • 2 篇 德文
  • 2 篇 俄文
检索条件"任意字段=Proceedings of the Conference on Empirical Methods in Natural Language Processing"
7710 条 记 录,以下是401-410 订阅
排序:
Using Artificial French Data to Understand the Emergence of Gender Bias in Transformer language Models
Using Artificial French Data to Understand the Emergence of ...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Conti, Lina Wisniewski, Guillaume Fdn Bruno Kessler Povo Italy Univ Trento Trento Italy Univ Paris Cite CNRS LLF F-75013 Paris France
Numerous studies have demonstrated the ability of neural language models to learn various linguistic properties without direct supervision. This work takes an initial step towards exploring the less researched topic o... 详细信息
来源: 评论
README++: Benchmarking Multilingual language Models for Multi-Domain Readability Assessment
README++: Benchmarking Multilingual Language Models for Mult...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Naous, Tarek Ryan, Michael J. Lavrouk, Anton Chandra, Mohit Xu, Wei College of Computing Georgia Institute of Technology United States
We present a comprehensive evaluation of large language models for multilingual readability assessment. Existing evaluation resources lack domain and language diversity, limiting the ability for cross-domain and cross... 详细信息
来源: 评论
How Do Large language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances
How Do Large Language Models Capture the Ever-changing World...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Zhang, Zihan Fang, Meng Chen, Ling Namazi-Rad, Mohammad-Reza Wang, Jun Univ Technol Sydney Sydney NSW Australia Univ Liverpool Liverpool Merseyside England Univ Wollongong Wollongong NSW Australia UCL London England
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper pr... 详细信息
来源: 评论
Detecting LLM-Assisted Cheating on Open-Ended Writing Tasks on language Proficiency Tests
Detecting LLM-Assisted Cheating on Open-Ended Writing Tasks ...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Niu, Chenhao Yancey, Kevin P. Liu, Ruidong Baig, Mirza Basim Horie, André Kenji Sharpnack, James Duolingo Inc. 5900 Penn Ave PittsburghPA15206 United States
The high capability of recent Large language Models (LLMs) has led to concerns about possible misuse as cheating assistants in open-ended writing tasks in assessments. Although various detecting methods have been prop... 详细信息
来源: 评论
VLIS: Unimodal language Models Guide Multimodal language Generation
VLIS: Unimodal Language Models Guide Multimodal Language Gen...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Chung, Jiwan Yu, Youngjae Yonsei Univ Seoul South Korea
Multimodal language generation, which leverages the synergy of language and vision, is a rapidly expanding field. However, existing vision-language models face challenges in tasks that require complex linguistic under... 详细信息
来源: 评论
FAC2E: Better Understanding Large language Model Capabilities by Dissociating language and Cognition
FAC2E: Better Understanding Large Language Model Capabilitie...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Wang, Xiaoqiang Wu, Lingfei Ma, Tengfei Liu, Bang DIRO Institut Courtois Université de Montréal Canada Mila - Quebec AI Institute Canada Anytime.AI Stony Brook University United States
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks. However, such a paradigm fails to comprehensively differentiate the fine-grained language... 详细信息
来源: 评论
CROW: Benchmarking Commonsense Reasoning in Real-World Tasks
CROW: Benchmarking Commonsense Reasoning in Real-World Tasks
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Ismayilzada, Mete Paul, Debjit Montariol, Syrielle Geva, Mor Bosselut, Antoine Ecole Polytech Fed Lausanne Lausanne Switzerland Google DeepMind London England
Recent efforts in natural language processing (NLP) commonsense reasoning research have yielded a considerable number of new datasets and benchmarks. However, most of these datasets formulate commonsense reasoning cha... 详细信息
来源: 评论
To Build Our Future, We Must Know Our Past: Contextualizing Paradigm Shifts in natural language processing
To Build Our Future, We Must Know Our Past: Contextualizing ...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Gururaja, Sireesh Bertsch, Amanda Na, Clara Widder, David Gray Strubell, Emma Carnegie Mellon Univ Language Technol Inst Pittsburgh PA 15213 USA Cornell Univ Cornell Tech Digital Life Initiat New York NY 10021 USA Allen Inst Artificial Intelligence Seattle WA USA
NLP is in a period of disruptive change that is impacting our methodologies, funding sources, and public perception. In this work, we seek to understand how to shape our future by better understanding our past. We stu... 详细信息
来源: 评论
Clustering Pseudo language Family in Multilingual Translation Models with Fisher Information Matrix
Clustering Pseudo Language Family in Multilingual Translatio...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Ma, Xinyu Liu, Xuebo Zhang, Min Harbin Inst Technol Inst Comp & Intelligence Shenzhen Peoples R China
In multilingual translation research, the comprehension and utilization of language families are of paramount importance. Nevertheless, clustering languages based solely on their ancestral families can yield suboptima... 详细信息
来源: 评论
Understanding Computational Models of Semantic Change: New Insights from the Speech Community
Understanding Computational Models of Semantic Change: New I...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Miletic, Filip Przewozny-Desriaux, Anne Tanguy, Ludovic Univ Stuttgart Inst Nat Language Proc Stuttgart Germany CNRS CLLE Toulouse France Univ Toulouse Toulouse France
We investigate the descriptive relevance of widely used semantic change models in linguistic descriptions of present-day speech communities. We focus on the sociolinguistic issue of contact-induced semantic shifts in ... 详细信息
来源: 评论