咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 951 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 732 篇 计算机科学与技术...
    • 469 篇 软件工程
    • 105 篇 信息与通信工程
    • 58 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 13 篇 土木工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 建筑学
    • 12 篇 生物医学工程(可授...
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 225 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 33 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 171 篇 管理学
    • 137 篇 图书情报与档案管...
    • 43 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 120 篇 knowledge graph
  • 96 篇 natural language...
  • 88 篇 graphic methods
  • 85 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 901 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
951 条 记 录,以下是91-100 订阅
排序:
Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences in dialectology
Bipartite spectral graph partitioning to co-cluster varietie...
收藏 引用
4th workshop on graph-based methods for natural language processing, Textgraphs 2009
作者: Wieling, Martijn Nerbonne, John University of Groningen Netherlands
In this study we used bipartite spectral graph partitioning to simultaneously cluster varieties and sound correspondences in Dutch dialect data. While clustering geographical varieties with respect to their pronunciat... 详细信息
来源: 评论
PGL at Textgraphs 2020 Shared Task: Explanation Regeneration using language and graph Learning methods  14
PGL at TextGraphs 2020 Shared Task: Explanation Regeneration...
收藏 引用
14th workshop on graph-based methods for natural language processing, Textgraphs 2020, in conjunction with the 28th International Conference on Computational Linguistics, COLING 2020
作者: Li, Weibin Lu, Yuxiang Huang, Zhengjie Liu, Jiaxiang Su, Weiyue Feng, Shikun Sun, Yu Baidu Inc. China
This paper describes the system designed by the Baidu PGL Team which achieved the first place in the Textgraphs 2020 Shared Task. The task focuses on generating explanations for elementary science questions. Given a q... 详细信息
来源: 评论
KagNet: Knowledge-Aware graph Networks for Commonsense Reasoning  9
KagNet: Knowledge-Aware Graph Networks for Commonsense Reaso...
收藏 引用
Conference on Empirical methods in natural language processing / 9th International Joint Conference on natural language processing (EMNLP-IJCNLP)
作者: Lin, Bill Yuchen Chen, Xinyue Chen, Jamin Ren, Xiang Univ Southern Calif Comp Sci Dept Los Angeles CA 90007 USA Shanghai Jiao Tong Univ Comp Sci Dept Shanghai Peoples R China
Commonsense reasoning aims to empower machines with the human ability to make presumptions about ordinary situations in our daily life. In this paper, we propose a textual inference framework for answering commonsense... 详细信息
来源: 评论
Parameter free hierarchical graph-based clustering for analyzing continuous word embeddings  11
Parameter free hierarchical graph-based clustering for analy...
收藏 引用
11th workshop on graph-based methods for natural language processing, Textgraphs 2017, in conjunction with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Trost, Thomas A. Klakow, Dietrich Saarland University Saarbrücken Germany
Word embeddings are high-dimensional vector representations of words and are thus difficult to interpret. In order to deal with this, we introduce an unsupervised parameter free method for creating a hierarchical grap... 详细信息
来源: 评论
graph-based Keyword Planning for Legal Clause Generation from Topics  4
Graph-based Keyword Planning for Legal Clause Generation fro...
收藏 引用
4th natural Legal language processing workshop, NLLP 2022, co-located with the 2022 Conference on Empirical methods in natural language processing, EMNLP 2022
作者: Joshi, Sagar Balaji, Sumanth Garimella, Aparna Varma, Vasudeva IIIT Hyderabad India Adobe Research United States
Generating domain-specific content such as legal clauses based on minimal user-provided information can be of significant benefit in automating legal contract generation. In this paper, we propose a controllable graph... 详细信息
来源: 评论
A graphical framework for contextual search and name disambiguation in email  1
A graphical framework for contextual search and name disambi...
收藏 引用
1st workshop on graph-based Algorithms for natural language processing, Textgraphs 2006 at Human language Technologies
作者: Minkov, Einat Cohen, William W. Ng, Andrew Y. Language Technologies Inst Carnegie Mellon University PittsburghPA15213 United States Machine Learning Dept Carnegie Mellon University PittsburghPA15213 United States Computer Science Dept Stanford University StanfordCA94305 United States
Similarity measures for text have historically been an important tool for solving information retrieval problems. In this paper we consider extended similarity metrics for documents and other objects embedded in graph... 详细信息
来源: 评论
LexRank: graph-based lexical centrality as salience in text summarization
收藏 引用
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH 2004年 第0期22卷 457-479页
作者: Erkan, G Radev, DR Univ Michigan Dept EECS Ann Arbor MI 48109 USA Univ Michigan Sch Informat Ann Arbor MI 48109 USA
We introduce a stochastic graph-based method for computing relative importance of textual units for natural language processing. We test the technique on the problem of Text Summarization (TS). Extractive TS relies on... 详细信息
来源: 评论
workshop on Unsupervised Learning in NLP at the 2011 Conference on Empirical methods in natural language processing, EMNLP 2011 - proceedings
Workshop on Unsupervised Learning in NLP at the 2011 Confere...
收藏 引用
1st workshop on Unsupervised Learning in NLP at the 2011 Conference on Empirical methods in natural language processing, EMNLP 2011
The proceedings contain 13 papers. The topics discussed include: structured databases of named entities from Bayesian nonparametrics;unsupervised cross-lingual lexical substitution;reducing the size of the representat...
来源: 评论
Spatial language understanding with multimodal graphs using declarative learning based programming  2
Spatial language understanding with multimodal graphs using ...
收藏 引用
2nd workshop on Structured Prediction for natural language processing, SPNLP 2017, held in conjunction with the Conference on Empirical methods in natural language processing, EMNLP 2017
作者: Kordjamshidi, Parisa Rahgooy, Taher Manzoor, Umar Computer Science Department Tulane University New Orleans United States
This work is on a previously formalized semantic evaluation task of spatial role labeling (SpRL) that aims at extraction of formal spatial meaning from text. Here, we report the results of initial efforts towards expl... 详细信息
来源: 评论
Reducing Knowledge Noise for Improved Semantic Analysis in Biomedical natural language processing Applications  5
Reducing Knowledge Noise for Improved Semantic Analysis in B...
收藏 引用
5th workshop on Clinical natural language processing, ClinicalNLP 2023. held at ACL 2023
作者: Naseem, Usman Thapa, Surendrabikram Zhang, Qi Hu, Liang Masood, Anum Nasim, Mehwish University of Sydney Australia Virginia Tech United States Tongji University China DeepBlue Academy of Sciences China Norwegian University of Science and Technology Norway University of Western Australia Australia Flinders University Australia
graph-based techniques have gained traction for representing and analyzing data in various natural language processing (NLP) tasks. Knowledge graph-based language representation models have shown promising results in ... 详细信息
来源: 评论