咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 951 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 732 篇 计算机科学与技术...
    • 469 篇 软件工程
    • 105 篇 信息与通信工程
    • 58 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 13 篇 土木工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 建筑学
    • 12 篇 生物医学工程(可授...
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 225 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 33 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 171 篇 管理学
    • 137 篇 图书情报与档案管...
    • 43 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 120 篇 knowledge graph
  • 96 篇 natural language...
  • 88 篇 graphic methods
  • 85 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 901 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
951 条 记 录,以下是101-110 订阅
排序:
Co-occurrence cluster features for lexical substitutions in context  48
Co-occurrence cluster features for lexical substitutions in ...
收藏 引用
5th workshop on graph-based methods for natural language processing, Textgraphs 2010
作者: Biemann, Chris 475 Brannan St Ste. 330 San Francisco CA 94107 United States
This paper examines the influence of features based on clusters of co-occurrences for supervised Word Sense Disambiguation and Lexical Substitution. Cooccurrence cluster features are derived from clustering the local ... 详细信息
来源: 评论
Multi-level association graphs - A new graph-based model for information retrieval
Multi-level association graphs - A new graph-based model for...
收藏 引用
2nd workshop on graph-based Algorithms for natural language processing, Textgraphs 2007
作者: Witschel, Hans Friedrich NLP department University of Leipzig P.O. Box 100920 04009 Leipzig Germany
This paper introduces multi-level association graphs (MLAGs), a new graph-based framework for information retrieval (IR). The goal of that framework is twofold: first, it is meant to be a meta model of IR, i.e. it sub... 详细信息
来源: 评论
DegExt: a language-independent keyphrase extractor
收藏 引用
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2013年 第3期4卷 377-387页
作者: Litvak, Marina Last, Mark Kandel, Abraham Sami Shamoon Acad Coll Engn Dept Software Engn IL-84100 Beer Sheva Israel Ben Gurion Univ Negev Dept Informat Syst Engn IL-84105 Beer Sheva Israel Univ S Florida Dept Comp Sci & Engn Tampa FL 33620 USA
In this paper, we introduce DegExt, a graph-based language-independent keyphrase extractor, which extends the keyword extraction method described in Litvak and Last (graph-based keyword extraction for single-document ... 详细信息
来源: 评论
Fusing Document, Collection and Label graph-based Representations with Word Embeddings for Text Classification  12
Fusing Document, Collection and Label Graph-based Representa...
收藏 引用
12th workshop on graph-based methods for natural language processing, Textgraphs 2018 - in conjunction with the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human, NAACL HLT 2018
作者: Skianis, Konstantinos Malliaros, Fragkiskos D. Vazirgiannis, Michalis École Polytechnique France CentraleSupélec and Inria Saclay France
Contrary to the traditional Bag-of-Words approach, we consider the graph-of-Words (GoW) model in which each document is represented by a graph that encodes relationships between the different terms. based on this form... 详细信息
来源: 评论
Measuring aboutness of an entity in a text  1
Measuring aboutness of an entity in a text
收藏 引用
1st workshop on graph-based Algorithms for natural language processing, Textgraphs 2006 at Human language Technologies
作者: Moens, Marie-Francine Jeuniaux, Patrick Angheluta, Roxana Mitra, Rudradeb Legal Informatics and Information Retrieval Katholieke Universiteit Leuven Belgium Department. of Psychology University of Memphis United States Mission Critical IT Brussels Belgium
In many information retrieval and selection tasks it is valuable to score how much a text is about a certain entity and to compute how much the text discusses the entity with respect to a certain viewpoint. In this pa... 详细信息
来源: 评论
GTN-ED: Event Detection Using graph Transformer Networks  15
GTN-ED: Event Detection Using Graph Transformer Networks
收藏 引用
15th workshop on graph-based methods for natural language processing, Textgraphs 2021
作者: Dutta, Sanghamitra Ma, Liang Saha, Tanay Kumar Lu, Di Tetreault, Joel Jaimes, Alejandro Carnegie Mellon University United States Dataminr United States
Recent works show that the graph structure of sentences, generated from dependency parsers, has potential for improving event detection. However, they often only leverage the edges (dependencies) between words, and di... 详细信息
来源: 评论
A novel graph kernel algorithm for improving the effect of text classification
收藏 引用
Computer Speech & language 2026年 95卷
作者: Fan Yang Tan Zhu Jing Huang Zhilin Huang Guoqi Xie College of Computer and Information Engineering Central South University of Forestry and Technology Changsha Hunan 41004 PR China School of Computer Science and Engineering Hunan University of Science and Technology Xiangtan Hunan 411201 PR China Key Laboratory for Embedded and Network Computing of Hunan Province College of Computer Science and Electronic Engineering Hunan University Changsha Hunan 410082 PR China
Text classification is an important topic in natural language processing. In recent years, both graph kernel methods and deep learning methods have been widely employed in text classification tasks. However, previous ... 详细信息
来源: 评论
Timestamped graphs: Evolutionary models of text for multi-document summarization
Timestamped graphs: Evolutionary models of text for multi-do...
收藏 引用
2nd workshop on graph-based Algorithms for natural language processing, Textgraphs 2007
作者: Lin, Ziheng Kan, Min-Yen School of Computing National University of Singapore Singapore 177543 Singapore
Current graph-based approaches to automatic text summarization, such as LexRank and TextRank, assume a static graph which does not model how the input texts emerge. A suitable evolutionary text graph model may impart ... 详细信息
来源: 评论
Unigram language models using diffusion smoothing over graphs
Unigram language models using diffusion smoothing over graph...
收藏 引用
2nd workshop on graph-based Algorithms for natural language processing, Textgraphs 2007
作者: Jedynak, Bruno Karakos, Damianos Dept. of Appl. Mathematics and Statistics Center for Imaging Sciences Johns Hopkins University Baltimore MD 21218-2686 United States Dept. of Electrical and Computer Engineering Center for Language and Speech Processing Johns Hopkins University Baltimore MD 21218-2686 United States
We propose to use graph-based diffusion techniques with data-dependent kernels to build unigram language models. Our approach entails building graphs, where each vertex corresponds uniquely to a word from a closed voc... 详细信息
来源: 评论
Unsupervised large-vocabularyword sense disambiguation with graph-based algorithms for sequence data labeling  05
Unsupervised large-vocabularyword sense disambiguation with ...
收藏 引用
Human language Technology Conference and Conference on Empirical methods in natural language processing, HLT/EMNLP 2005, Co-located with the 2005 Document Understanding Conference, DUC and the 9th International workshop on Parsing Technologies, IWPT
作者: Mihalcea, Rada Department of Computer Science University of North Texas United States
This paper introduces a graph-based algorithm for sequence data labeling, using random walks on graphs encoding label dependencies. The algorithm is illustrated and tested in the context of an unsupervised word sense ... 详细信息
来源: 评论