咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 4 册 图书

馆藏范围

  • 947 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 97 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 23 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理
  • 9 篇 data mining

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 897 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
947 条 记 录,以下是131-140 订阅
排序:
Multilingual Text Detoxification Using Google Cloud Translation and Post-processing  25
Multilingual Text Detoxification Using Google Cloud Translat...
收藏 引用
25th Working Notes of the Conference and Labs of the Evaluation Forum, CLEF 2024
作者: Luo, Zhongyu Luo, Man Wang, Aiguo Foshan University Guangdong Foshan China Guangzhou City University of Technology Guangdong Guangzhou China
The task of text detoxification aims to re-write toxic text into non-toxic text. Though existing methods have achieved impressive detoxification performance in monolingual settings, multilingual text detoxification re... 详细信息
来源: 评论
Schema-adaptable Knowledge graph Construction
Schema-adaptable Knowledge Graph Construction
收藏 引用
Conference on Empirical methods in natural language processing (EMNLP)
作者: Ye, Hongbin Gui, Honghao Xu, Xin Chen, Xi Chen, Huajun Zhang, Ningyu Zhejiang Univ Hangzhou Peoples R China Zhejiang Lab Hangzhou Peoples R China Tencent Platform & Content Grp Shanghai Peoples R China Zhejiang Univ Ant Grp Joint Lab Knowledge Graph Hangzhou Peoples R China
Conventional Knowledge graph Construction (KGC) approaches typically follow the static information extraction paradigm with a closed set of pre-defined schema. As a result, such approaches fall short when applied to d... 详细信息
来源: 评论
Multilevel Hypernode graphs for Effective and Efficient Entity Linking  16
Multilevel Hypernode Graphs for Effective and Efficient Enti...
收藏 引用
16th workshop on graph-based methods for natural language processing, Textgraphs 2022, in conjunction with the 29th International Conference on Computational Linguistics, COLING 2022
作者: Montero, David Martinez, Javier Yebes, J. Javier NielsenIQ
Information extraction on documents still remains a challenge, especially when dealing with unstructured documents with complex and variable layouts. graph Neural Networks seem to be a promising approach to overcome t... 详细信息
来源: 评论
EMNLP-IJCNLP 2019 - graph-based methods for natural language processing - proceedings of the 13th workshop
EMNLP-IJCNLP 2019 - Graph-Based Methods for Natural Language...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
The proceedings contain 23 papers. The topics discussed include: graph-based and graph-supported machine learning and deep learning methods;graph-based and graph-supported deep learning (e.g., graph-based recurrent an...
来源: 评论
Word Sense Disambiguation of French Lexicographical Examples Using Lexical Networks  16
Word Sense Disambiguation of French Lexicographical Examples...
收藏 引用
16th workshop on graph-based methods for natural language processing, Textgraphs 2022, in conjunction with the 29th International Conference on Computational Linguistics, COLING 2022
作者: Sinha, Aman Ollinger, Sandrine Constant, Mathieu ATILF Université de Lorraine Nancy France
This paper focuses on the task of word sense disambiguation (WSD) on lexicographic examples relying on the French Lexical Network (fr-LN). For this purpose, we exploit the lexical and relational properties of the netw... 详细信息
来源: 评论
GRADA: graph Generative Data Augmentation for Commonsense Reasoning  2
GRADA: Graph Generative Data Augmentation for Commonsense Re...
收藏 引用
2nd workshop on Deep Learning on graphs for natural language processing, DLG4NLP 2022
作者: Maharana, Adyasha Bansal, Mohit Department of Computer Science University of North Carolina Chapel Hill United States
Recent advances in commonsense reasoning have been fueled by the availability of large-scale human annotated datasets. Manual annotation of such datasets, many of which are based on existing knowledge bases, is expens... 详细信息
来源: 评论
Transformer for Skeleton-based action recognition: A review of recent advances
收藏 引用
NEUROCOMPUTING 2023年 第1期537卷 164-186页
作者: Xin, Wentian Liu, Ruyi Liu, Yi Chen, Yu Yu, Wenxin Miao, Qiguang Xian Key Lab Big Data & Intelligent Vis Xian 710071 Shaanxi Peoples R China Xidian Univ Sch Comp Sci & Technol 2 Taibainan Rd Xian 710071 Shaanxi Peoples R China
Skeleton-based action recognition has rapidly become one of the most popular and essential research topics in computer vision. The task is to analyze the characteristics of human joints and accurately clas-sify their ... 详细信息
来源: 评论
WalkLM: A Uniform language Model Fine-tuning Framework for Attributed graph Embedding  37
WalkLM: A Uniform Language Model Fine-tuning Framework for A...
收藏 引用
37th Conference on Neural Information processing Systems (NeurIPS)
作者: Tan, Yanchao Zhou, Zihao Lv, Hang Liu, Weiming Yang, Carl Fuzhou Univ Coll Comp & Data Sci Fuzhou Peoples R China Zhejiang Univ Coll Comp Sci Hangzhou Peoples R China Emory Univ Dept Comp Sci Atlanta GA 30322 USA
graphs are widely used to model interconnected entities and improve downstream predictions in various real-world applications. However, real-world graphs nowadays are often associated with complex attributes on multip... 详细信息
来源: 评论
Automatic Medical Knowledge graph Construction  7
Automatic Medical Knowledge Graph Construction
收藏 引用
7th Doctoral Symposium on natural language processing, NLP-DS 2024
作者: Pardo-Ferrera, Joel Madrid Spain
Knowledge graphs are crucial for structuring and integrating large amounts of data, improving decision-making and data interoperability, especially in the healthcare domain. This PhD thesis aims to implement a unified... 详细信息
来源: 评论
GUSUM: graph-based Unsupervised Summarization using Sentence Features Scoring and Sentence-BERT  16
GUSUM: Graph-Based Unsupervised Summarization using Sentence...
收藏 引用
16th workshop on graph-based methods for natural language processing, Textgraphs 2022, in conjunction with the 29th International Conference on Computational Linguistics, COLING 2022
作者: Gokhan, Tuba Smith, Phillip Lee, Mark School of Computer Science University of Birmingham United Kingdom
Unsupervised extractive document summarization aims to extract salient sentences from a document without requiring a labelled corpus. In existing graph-based methods, vertex and edge weights are usually created by cal... 详细信息
来源: 评论