咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 951 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 97 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 901 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
951 条 记 录,以下是191-200 订阅
排序:
Text-Aware graph Embeddings for Donation Behavior Prediction  16
Text-Aware Graph Embeddings for Donation Behavior Prediction
收藏 引用
16th workshop on graph-based methods for natural language processing, Textgraphs 2022, in conjunction with the 29th International Conference on Computational Linguistics, COLING 2022
作者: Dong, MeiXing Xu, Xueming Mihalcea, Rada University of Michigan United States
Predicting user behavior is essential for a large number of applications including recommender and dialog systems, and more broadly in domains such as healthcare, education, and economics. In this paper, we show that ... 详细信息
来源: 评论
Gen-IR @ SIGIR 2023: The first workshop on Generative Information Retrieval  46
Gen-IR @ SIGIR 2023: The First Workshop on Generative Inform...
收藏 引用
46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Benedict, Gabriel Zhang, Ruqing Metzler, Donald Univ Amsterdam Amsterdam Netherlands RTL NL Amsterdam Netherlands Chinese Acad Sci ICT Beijing Peoples R China Google Res Mountain View CA USA
Generative information retrieval (IR) has experienced substantial growth across multiple research communities (e.g., information retrieval, computer vision, natural language processing, and machine learning), and has ... 详细信息
来源: 评论
An Exploration of Linguistically-Driven and Transfer Learning methods for Euphemism Detection  3
An Exploration of Linguistically-Driven and Transfer Learnin...
收藏 引用
3rd workshop on Figurative language processing, FigLang 2022, as part of EMNLP 2022
作者: Tiwari, Devika Parde, Natalie Natural Language Processing Laboratory Department of Computer Science University of Illinois Chicago United States
Euphemisms are often used to drive rhetoric, but their automated recognition and interpretation are under-explored. We investigate four methods for detecting euphemisms in sentences containing potentially euphemistic ... 详细信息
来源: 评论
Semantic Interpretation of BERT embeddings with Knowledge graphs  31
Semantic Interpretation of BERT embeddings with Knowledge Gr...
收藏 引用
31st Symposium of Advanced Database Systems, SEBD 2023
作者: De Bellis, Alessandro Biancofiore, Giovanni Maria Anelli, Vito Walter Narducci, Fedelucio Di Noia, Tommaso Ragone, Azzurra Di Sciascio, Eugenio Polytechnic University of Bari Bari Italy University of Bari Bari Italy
Pretrained language models have transformed the way we process natural languages, enhancing the performance of related systems. BERT has played a pivotal role in revolutionizing the field of natural language Processin... 详细信息
来源: 评论
Construction and Analysis of Surrounding Travel Demanding graph based on Dual Contrastive Learning Text Classification and graph Neural Network  3
Construction and Analysis of Surrounding Travel Demanding Gr...
收藏 引用
3rd International Conference on Big Data and Artificial Intelligence and Software Engineering, ICBASE 2022
作者: Lai, Guoping Chi, Zhiheng Pan, Fan Xu, Zhihao Hu, Hao Information Engineering University Zhengzhou450001 China
Understanding the main information about the current situation of the tourism market has become an urgent need and new trends in the development of the tourism market. In this paper, we use natural language processing... 详细信息
来源: 评论
Pair-based Joint Encoding with Relational graph Convolutional Networks for Emotion-Cause Pair Extraction
Pair-Based Joint Encoding with Relational Graph Convolutiona...
收藏 引用
2022 Conference on Empirical methods in natural language processing, EMNLP 2022
作者: Liu, Junlong Shang, Xichen Ma, Qianli School of Computer Science and Engineering South China University of Technology Guangzhou China
Emotion-cause pair extraction (ECPE) aims to extract emotion clauses and corresponding cause clauses, which have recently received growing attention. Previous methods sequentially encode features with a specified orde... 详细信息
来源: 评论
Knowledge graph-based Hierarchical Text Semantic Representation
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2024年 第1期2024卷 5583270-5583270页
作者: Wu, Yongliang Pan, Xiao Li, Jinghui Dou, Shimao Dong, Jiahao Wei, Dan Shijiazhuang Tiedao Univ Sch Informat Sci & Technol Shijiazhuang 050023 Hebei Peoples R China
Document representation is the basis of language modeling. Its goal is to turn natural language text that flows into a structured form that can be stored and processed by a computer. The bag-of-words model is used by ... 详细信息
来源: 评论
Cross-modal multi-relationship aware reasoning for image-text matching
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第9期81卷 12005-12027页
作者: Zhang, Jin He, Xiaohai Qing, Linbo Liu, Luping Luo, Xiaodong Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China
Cross-modal image-text matching has attracted considerable interest in both computer vision and natural language processing communities. The main issue of image-text matching is to learn the compact cross-modal repres... 详细信息
来源: 评论
Legal and Political Stance Detection of SCOTUS language  4
Legal and Political Stance Detection of SCOTUS Language
收藏 引用
4th natural Legal language processing workshop, NLLP 2022, co-located with the 2022 Conference on Empirical methods in natural language processing, EMNLP 2022
作者: Bergam, Noah Allaway, Emily McKeown, Kathleen Columbia University New YorkNY United States
We analyze publicly available US Supreme Court documents using automated stance detection. In the first phase of our work, we investigate the extent to which the Court's public-facing language is political. We pro... 详细信息
来源: 评论
Evaluating the Validity of Word-level Adversarial Attacks with Large language Models  62
Evaluating the Validity of Word-level Adversarial Attacks wi...
收藏 引用
62nd Annual Meeting of the Association-for-Computational-Linguistics (ACL) / Student Research workshop (SRW)
作者: Zhou, Huichi Wang, Zhaoyang Wang, Hongtao Chen, Dongping Mu, Wenhan Zhang, Fangyuan North China Elect Power Univ Dept Comp Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China HUST Wuhan Peoples R China Chongqing Univ Chongqing Peoples R China
Deep neural networks exhibit vulnerability to word-level adversarial attacks in natural language processing. Most of these attack methods adopt synonymous substitutions to perturb original samples for crafting adversa... 详细信息
来源: 评论