咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 951 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 97 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 901 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
951 条 记 录,以下是21-30 订阅
排序:
Automated Generation of Competency Questions Using Large language Models and Knowledge graphs  3
Automated Generation of Competency Questions Using Large Lan...
收藏 引用
3rd International workshop on natural language processing for Knowledge graph Creation, NLP4KGC 2024
作者: Di Nuzzo, Dario Vakaj, Edlira Saadany, Hadeel Grishti, Eglantina Mihindukulasooriya, Nandana College of Computing Birmigham City University United Kingdom University of Tirana Tirana Albania IBM Research USA United States
This research presents a novel approach to automated competency question generation by integrating Large language Models (LLMs) with Knowledge graphs (KGs), particularly within the context of sustainability assessment... 详细信息
来源: 评论
Structure-Information-based Reasoning over the Knowledge graph: A Survey of methods and Applications
收藏 引用
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 2024年 第8期18卷 1-42页
作者: Meng, Siyuan Zhou, Jie Chen, Xuxin Liu, Yufei Lu, Fengyuan Huang, Xinli East China Normal Univ Shanghai 200062 Peoples R China
The knowledge graph (KG) is an efficient form of knowledge organization and expression, providing prior knowledge support for various downstream tasks, and has received extensive attention in natural language processi... 详细信息
来源: 评论
Toward Auto-Modeling of Formal Verification for NextG Protocols: A Multimodal Cross- and Self-Attention Large language Model Approach
收藏 引用
IEEE ACCESS 2024年 12卷 27858-27869页
作者: Yang, Jingda Wang, Ying Stevens Inst Technol Sch Syst & Enterprises Hoboken 07030 NJ USA
This paper introduces Auto-modeling of Formal Verification with Real-world Prompting for 5G and NextG protocols (AVRE), a novel system designed for the formal verification of Next Generation (NextG) communication prot... 详细信息
来源: 评论
CoverICL: Selective Annotation for In-Context Learning via Active graph Coverage
CoverICL: Selective Annotation for In-Context Learning via A...
收藏 引用
2024 Conference on Empirical methods in natural language processing, EMNLP 2024
作者: Mavromatis, Costas Srinivasan, Balasubramaniam Shen, Zhengyuan Zhang, Jiani Rangwala, Huzefa Faloutsos, Christos Karypis, George Amazon Web Services United States University of Minnesota United States
In-context learning (ICL) adapts Large language Models (LLMs) to new tasks, without requiring any parameter updates, but few annotated examples as input. In this work, we investigate selective annotation for ICL, wher... 详细信息
来源: 评论
An Evaluation Framework for Mapping News Headlines to Event Classes in a Knowledge graph  6
An Evaluation Framework for Mapping News Headlines to Event ...
收藏 引用
6th workshop on Challenges and Applications of Automated Extraction of Socio-Political Events from Text, CASE 2023
作者: Mbouadeu, Steve Fonin Lorenzo, Martin Barker, Ken Hassanzadeh, Oktie St. John’s University United States IBM Research United States
Mapping ongoing news headlines to event-related classes in a rich knowledge base can be an important component in a knowledge-based event analysis and forecasting solution. In this paper, we present a methodology for ... 详细信息
来源: 评论
VISPool: Enhancing Transformer Encoders with Vector Visibility graph Neural Networks  62
VISPool: Enhancing Transformer Encoders with Vector Visibili...
收藏 引用
62nd Annual Meeting of the Association-for-Computational-Linguistics (ACL) / Student Research workshop (SRW)
作者: Alikasifoglu, Tuna Aras, Arda Can Koc, Aykut Bilkent Univ Dept Elect & Elect Engn Ankara Turkiye Bilkent Univ UMRAM Ankara Turkiye
The emergence of transformers has revolutionized natural language processing (NLP), as evidenced in various NLP tasks. While graph neural networks (GNNs) show recent promise in NLP, they are not standalone replacement... 详细信息
来源: 评论
Universal embedding for pre-trained models and data bench
收藏 引用
NEUROCOMPUTING 2025年 619卷
作者: Cho, Namkyeong Cho, Taewon Shin, Jaesun Jeon, Eunjoo Lee, Taehee Pohang Univ Sci & Technol POSTECH Ctr Math Machine Learning & its Applicat CM2LA Dept Math Pohang 37673 Gyeongbuk South Korea Samsung SDS 125 Olymp Ro 35 Gil Seoul 05510 South Korea
The transformer architecture has shown significant improvements in the performance of various natural language processing (NLP) tasks. One of the great advantages of transformer-based model is that they allow for the ... 详细信息
来源: 评论
The Second workshop on Knowledge-Augmented methods for natural language processing  23
The Second Workshop on Knowledge-Augmented Methods for Natur...
收藏 引用
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
作者: Yu, Wenhao Tong, Lingbo Shi, Weijia Peng, Nanyun Jiang, Meng Univ Notre Dame Notre Dame IN 46556 USA Univ Washington Seattle WA 98195 USA Univ Calif Los Angeles Los Angeles CA USA
language models are being developed and deployed in many applications, "small"-scale and large-scale, generic and specialized, text-only and multimodal, etc. Meanwhile, the missingness of important knowledge... 详细信息
来源: 评论
Multi-level feature subgraph aggregation graph neural network
收藏 引用
INFORMATION FUSION 2025年 121卷
作者: Xie, Chengxin Song, Qiya Huang, Jingui Chen, Wei Pan, Liangrui Hunan Normal Univ Coll Informat Sci & Engn Changsha 410000 Peoples R China Hunan Normal Univ Hunan Prov Key Lab Intelligent Comp & Language Inf Changsha 410000 Peoples R China Hebei Univ Architecture Coll Informat Engn Zhangjiakou 075000 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410000 Peoples R China
Heterogeneous graph Convolutional Networks (HGCNs) have become a pivotal technology for pattern mining in heterogeneous graphs. However, existing methods for heterogeneous graphs often overlook the distinct interactio... 详细信息
来源: 评论
Knowledge graph Enhanced Large language Model Editing
Knowledge Graph Enhanced Large Language Model Editing
收藏 引用
2024 Conference on Empirical methods in natural language processing, EMNLP 2024
作者: Zhang, Mengqi Ye, Xiaotian Liu, Qiang Ren, Pengjie Wu, Shu Chen, Zhumin School of Computer Science and Technology Shandong University China School of Computer Science Beijing University of Posts and Telecommunications China Institute of Automation Chinese Academy of Sciences China
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks, yet their efficacy is hampered by inaccuracies and outdated knowledge. Model editing emerges as a promising solution to ad... 详细信息
来源: 评论