咨询与建议

限定检索结果

文献类型

  • 757 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 955 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 98 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 46 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 13 篇 knowledge graphs
  • 12 篇 natural language...
  • 12 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 905 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
955 条 记 录,以下是331-340 订阅
排序:
Weakly-supervised Text Classification based on Keyword graph
Weakly-supervised Text Classification Based on Keyword Graph
收藏 引用
Conference on Empirical methods in natural language processing (EMNLP)
作者: Zhang, Lu Ding, Jiandong Xu, Yi Liu, Yingyao Zhou, Shuigeng Fudan Univ Shanghai Key Lab Intelligent Informat Proc Shanghai Peoples R China Fudan Univ Sch Comp Sci Shanghai Peoples R China Alibaba Grp Hangzhou Peoples R China
Weakly-supervised text classification has received much attention in recent years for it can alleviate the heavy burden of annotating massive data. Among them, keyword-driven methods are the mainstream where user-prov... 详细信息
来源: 评论
Text Summarization Method based on Gated Attention graph Neural Network
收藏 引用
SENSORS 2023年 第3期23卷 1654-1654页
作者: Huang, Jingui Wu, Wenya Li, Jingyi Wang, Shengchun Hunan Normal Univ Coll Informat Sci & Engn Changsha 410081 Peoples R China
Text summarization is an information compression technology to extract important information from long text, which has become a challenging research direction in the field of natural language processing. At present, t... 详细信息
来源: 评论
UIUC BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP Contributions  15
UIUC BioNLP at SemEval-2021 Task 11: A Cascade of Neural Mod...
收藏 引用
15th International workshops on Semantic Evaluation (SemEval)
作者: Liu, Haoyang Sarol, Janina Kilicoglu, Halil Univ Illinois Sch Informat Sci Urbana IL 61801 USA
We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications in English. To identify... 详细信息
来源: 评论
Guiding Transformer to Generate graph Structure for AMR Parsing
Guiding Transformer to Generate Graph Structure for AMR Pars...
收藏 引用
2022 International Conference on Neural Networks, Information, and Communication Engineering, NNICE 2022
作者: Niu, Runliang Wang, Qi Jilin University ChangChun China
Meaning Representation (AMR) is a kind of semantic representation of natural language, which aims to represent the semantics of a sentence by a rooted, directed, and acyclic graph (DAG). Most existing AMR parsing work... 详细信息
来源: 评论
Stage-wise fine-tuning for graph-to-text generation  59
Stage-wise fine-tuning for graph-to-text generation
收藏 引用
2021 Student Research workshop, SRW 2021 at the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on natural language processing, ACL-IJCNLP 2021
作者: Wang, Qingyun Yavuz, Semih Lin, Xi Victoria Ji, Heng Rajani, Nazneen Fatema University of Illinois at Urbana-Champaign United States Salesforce Research Facebook AI
graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders. However, they fail to fully utilize the structure information of the input... 详细信息
来源: 评论
Exploiting Multiple Features for Hash Codes Learning with Semantic-Alignment-Promoting Variational Auto-encoder  12th
Exploiting Multiple Features for Hash Codes Learning with Se...
收藏 引用
12th National CCF Conference on natural language processing and Chinese Computing, NLPCC 2023
作者: Chen, Jiayang Su, Qinliang School of Computer Science and Engineering Sun Yat-Sen University Guangzhou China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Beijing China
Semantic hashing is an effective technique to empower information retrieval. Currently, considerable efforts have been dedicated to generating high-quality hash codes by modeling document features using generative mod... 详细信息
来源: 评论
Lang3DSG: language-based contrastive pre-training for 3D Scene graph prediction
Lang3DSG: Language-based contrastive pre-training for 3D Sce...
收藏 引用
International Conference on 3D Imaging, Modeling, processing, Visualization and Transmission (3DIMPVT)
作者: Sebastian Koch Pedro Hermosilla Narunas Vaskevicius Mirco Colosi Timo Ropinski Bosch Center for Artificial Intelligence Robert Bosch Corporate Research University of Ulm TU Vienna
3D scene graphs are an emerging 3D scene representation, that models both the objects present in the scene as well as their relationships. However, learning 3D scene graphs is a challenging task because it requires no... 详细信息
来源: 评论
graph language Model (GLM): A new graph-based approach to detect social instabilities
arXiv
收藏 引用
arXiv 2024年
作者: de Oliveira, Wallyson Lemes Shamsaddini, Vahid Ghofrani, Ali Inda, Rahul Singh Veeramaneni, Jithendra Sai Voutaz, Étienne Giotto.ai SA Place de la Gare 4 Lausanne1004 Switzerland Armasuisse Feuerwerkerstrasse 39 Thun3602 Switzerland
This scientific report presents a novel methodology for the early prediction of important political events using News datasets. The methodology leverages natural language processing, graph theory, clique analysis, and... 详细信息
来源: 评论
Quantum probability-inspired graph neural network for document representation and classification
收藏 引用
NEUROCOMPUTING 2021年 445卷 276-286页
作者: Yan, Peng Li, Linjing Jin, Miaotianzi Zeng, Daniel Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China Shenzhen Artificial Intelligence & Data Sci Inst Shenzhen Peoples R China
Recent studies have found that text can be represented in Hilbert space through a neural network driven by quantum probability, which provides a unified representation of texts with different granularities without los... 详细信息
来源: 评论
GCNGAN: Translating natural language to Programming language based on GAN  2
GCNGAN: Translating Natural Language to Programming Language...
收藏 引用
2021 2nd International workshop on Electronic communication and Artificial Intelligence, IWECAI 2021
作者: Dai, Hongming Chen, Chen Li, Yunjing Yuan, Yanghao Department of Computer Science and Engineering Northeastern University Shenyang China Department of Electronic Engineering Tsinghua University Beijing China
Cross-language translating has been well solved with the help of the processing of natural language processing(NLP). However, there are a few studies done about the domain of translating the natural language to progra... 详细信息
来源: 评论