咨询与建议

限定检索结果

文献类型

  • 757 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 955 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 98 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 46 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 13 篇 knowledge graphs
  • 12 篇 natural language...
  • 12 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 905 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
955 条 记 录,以下是421-430 订阅
排序:
methods for automatic sentiment detection  10
Methods for automatic sentiment detection
收藏 引用
10th Annual International Scientific and Practical Conference named after A. I. Kitov Information Technologies and Mathematical methods in Economics and Management, IT and MM 2020
作者: Gurin, Anatoly A. Plekhanov Russian University of Economics 36 Stremyanny lane Moscow115998 Russia
Semantic analysis has great potential applications in various fields of science and the national economy. Much of the information in the world is not structured, so there is the problem of processing and extracting us... 详细信息
来源: 评论
Constructing a Knowledge graph for Vietnamese Legal Cases with Heterogeneous graphs
arXiv
收藏 引用
arXiv 2023年
作者: Vuong, Thi-Hai-Yen Hoang, Minh-Quan Nguyen, Tan-Minh Nguyen, Hoang-Trung Nguyen, Ha-Thanh VNU University of Engineering and Technology Hanoi Viet Nam National Institute of Informatics Tokyo Japan
This paper presents a knowledge graph construction method for legal case documents and related laws, aiming to organize legal information efficiently and enhance various downstream tasks. Our approach consists of thre... 详细信息
来源: 评论
E2E-VLP: End-to-End Vision-language Pre-training Enhanced by Visual Learning  59
E2E-VLP: End-to-End Vision-Language Pre-training Enhanced by...
收藏 引用
Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on natural language processing (IJCNLP) / 6th workshop on Representation Learning for NLP (RepL4NLP)
作者: Xu, Haiyang Yan, Ming Li, Chenliang Bi, Bin Huang, Songfang Xiao, Wenming Huang, Fei Alibaba Grp Hangzhou Peoples R China
Vision-language pre-training (VLP) on large-scale image-text pairs has achieved huge success for the cross-modal downstream tasks. The most existing pre-training methods mainly adopt a two-step training procedure, whi... 详细信息
来源: 评论
Joint Learning of the graph and the Data Representation for graph-based Semi-Supervised Learning  14
Joint Learning of the Graph and the Data Representation for ...
收藏 引用
14th workshop on graph-based methods for natural language processing, Textgraphs 2020, in conjunction with the 28th International Conference on Computational Linguistics, COLING 2020
作者: Vargas-Vieyra, Mariana Bellet, Aurélien Denis, Pascal Magnet Team Inria Lille - Nord Europe France Université de Lille CNRS UMR 9189 CRIStAL Villeneuve d’Ascq59650 France
graph-based semi-supervised learning is appealing when labels are scarce but large amounts of unlabeled data are available. These methods typically use a heuristic strategy to construct the graph based on some fixed d... 详细信息
来源: 评论
Detection of cyberbullying in Arabic social media using dynamic graph neural network
Detection of cyberbullying in Arabic social media using dyna...
收藏 引用
2022 Tunisian-Algerian Joint Conference on Applied Computing, TACC 2022
作者: Bouliche, Ahmed Rezoug, Abdellah Department of computer science Faculty of sciences University of Boumerdes Boumerdes Algeria
Despite all the advantages social networks have brought to the world, they are also a very favourable environment for the growth of so-called electronic crimes. Textual exchanges between users may include clues to cri... 详细信息
来源: 评论
Amendable Generation for Dialogue State Tracking  3
Amendable Generation for Dialogue State Tracking
收藏 引用
3rd workshop on natural language processing for Conversational AI, NLP4ConvAI 2021
作者: Tian, Xin Huang, Liankai Lin, Yingzhan Bao, Siqi He, Huang Yang, Yunyi Wu, Hua Wang, Fan Sun, Shuqi Baidu Inc. China
In task-oriented dialogue systems, recent dialogue state tracking methods tend to perform one-pass generation of the dialogue state based on the previous dialogue state. The mistakes of these models made at the curren... 详细信息
来源: 评论
Large language Models on graphs: A Comprehensive Survey
arXiv
收藏 引用
arXiv 2023年
作者: Jin, Bowen Liu, Gang Han, Chi Jiang, Meng Ji, Heng Han, Jiawei University of Illinois at Urbana-Champaign United States University of Notre Dame United States
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g.,... 详细信息
来源: 评论
graph Representation Learning in Document Wikification  16th
Graph Representation Learning in Document Wikification
收藏 引用
16th IAPR International Conference on Document Analysis and Recognition (ICDAR)
作者: Saeidi, Mozhgan Milios, Evangelos Zeh, Norbert Dalhousie Univ Halifax NS Canada
Wikification (entity annotation) is a challenging task in natural language processing (NLP). It is a method to automatically enrich a text with links to Wikipedia as a knowledge base. Wikification starts from detectin... 详细信息
来源: 评论
graph Relational Topic Model with Higher-order graph Attention Auto-encoders
Graph Relational Topic Model with Higher-order Graph Attenti...
收藏 引用
Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on natural language processing (IJCNLP) / 6th workshop on Representation Learning for NLP (RepL4NLP)
作者: Xie, Qianqian Huang, Jimin Du, Pan Peng, Min Univ Manchester Dept Comp Sci Manchester Lancs England Wuhan Univ Sch Comp Sci Wuhan Peoples R China Univ Montreal Dept Comp Sci & Operat Res Montreal PQ Canada
Learning low-dimensional representations of networked documents is a crucial task for documents linked in network structures. Relational Topic Models (RTMs) have shown their strengths in modeling both document content... 详细信息
来源: 评论
graph-based Syntactic Word Embeddings  14
Graph-based Syntactic Word Embeddings
收藏 引用
14th workshop on graph-based methods for natural language processing, Textgraphs 2020, in conjunction with the 28th International Conference on Computational Linguistics, COLING 2020
作者: Al-Ghezi, Ragheb Kurimo, Mikko Aalto University Finland
We propose a simple and efficient framework to learn syntactic embeddings based on information derived from constituency parse trees. Using biased random walk methods, our embeddings not only encode syntactic informat... 详细信息
来源: 评论