咨询与建议

限定检索结果

文献类型

  • 757 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 955 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 98 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 46 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 13 篇 knowledge graphs
  • 12 篇 natural language...
  • 12 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 905 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
955 条 记 录,以下是481-490 订阅
排序:
SD2SG: A Novel Framework for Detecting Important Subevents from Crisis Events via Dynamic Semantic graphs  7
SD2SG: A Novel Framework for Detecting Important Subevents f...
收藏 引用
7th workshop on Noisy User-Generated Text, W-NUT 2021
作者: Spiliopoulou, Evangelia Saha, Tanay K. Tetreault, Joel Jaimes, Alejandro Language Technologies Institute Carnegie Mellon University United States Dataminr Inc. United States
Social media is an essential tool to share information about crisis events, such as natural disasters. Event Detection aims at extracting information in the form of an event, but considers each event in isolation, wit... 详细信息
来源: 评论
Keep It Surprisingly Simple: A Simple first Order graph based Parsing Model for Joint Morphosyntactic Parsing in Sanskrit
Keep It Surprisingly Simple: A Simple First Order Graph Base...
收藏 引用
Conference on Empirical methods in natural language processing (EMNLP)
作者: Krishna, Amrith Gupta, Ashim Garasangi, Deepak Satuluri, Pavankumar Goyal, Pawan Univ Cambridge Dept Comp Sci & Technol Cambridge England Univ Utah Sch Comp Salt Lake City UT USA Chinmaya Vishwavidyapeeth Sch Linguist & Literary Studies Kochi India IIT Kharagpur Dept Comp Sci & Engn Kharagpur India
Morphologically rich languages seem to benefit from joint processing of morphology and syntax, as compared to pipeline architectures. We propose a graph-based model for joint morphological parsing and dependency parsi... 详细信息
来源: 评论
KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization and Completion
KACC: A Multi-task Benchmark for Knowledge Abstraction, Conc...
收藏 引用
Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on natural language processing (IJCNLP) / 6th workshop on Representation Learning for NLP (RepL4NLP)
作者: Zhou, Jie Hu, Shengding Lv, Xin Yang, Cheng Liu, Zhiyuan Xu, Wei Jiang, Jie Li, Juanzi Sun, Maosong Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Tsinghua Univ Inst Artificial Intelligence Beijing Peoples R China Tsinghua Univ State Key Lab Intelligent Technol & Syst Beijing Peoples R China Beijing Univ Posts & Telecommun Sch Comp Sci Beijing Peoples R China Tencent Tencent Mkt Solut Shenzhen Peoples R China
A comprehensive knowledge graph (KG) contains an instance-level entity graph and an ontology-level concept graph. The two-view KG provides a testbed for models to "simulate" human's abilities on knowledg... 详细信息
来源: 评论
HawkEye: Cross-Platform Malware Detection with Representation Learning on graphs  30th
HawkEye: Cross-Platform Malware Detection with Representatio...
收藏 引用
30th International Conference on Artificial Neural Networks (ICANN)
作者: Xu, Peng Zhang, Youyi Eckert, Claudia Zarras, Apostolis Tech Univ Munich Munich Germany Tongji Univ Shanghai Peoples R China Delft Univ Technol Delft Netherlands
Malicious software, widely known as malware, is one of the biggest threats to our interconnected society. Cybercriminals can utilize malware to carry out their nefarious tasks. To address this issue, analysts have dev... 详细信息
来源: 评论
Exploiting Structured Knowledge in Text via graph-Guided Representation Learning
Exploiting Structured Knowledge in Text via Graph-Guided Rep...
收藏 引用
Conference on Empirical methods in natural language processing (EMNLP)
作者: Shen, Tao Mao, Yi He, Pengcheng Long, Guodong Trischler, Adam Chen, Weizhu Univ Technol Sydney FEIT Sch Comp Sci Australian AI Inst Sydney NSW Australia Microsoft Dynamics 365 AI Redmond WA USA Microsoft Res Montreal PQ Canada Microsoft Redmond WA USA
In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level ... 详细信息
来源: 评论
Knowledge graph Alignment with Entity-Pair Embedding
Knowledge Graph Alignment with Entity-Pair Embedding
收藏 引用
Conference on Empirical methods in natural language processing (EMNLP)
作者: Wang, Zhichun Yang, Jinjian Ye, Xiaoju Beijing Normal Univ Sch Artificial Intelligence Beijing Peoples R China Minist Educ Engn Res Ctr Intelligent Technol & Educ Applicat Beijing Peoples R China
Knowledge graph (KG) alignment is to match entities in different KGs, which is important to knowledge fusion and integration. Recently, a number of embedding-based approaches for KG alignment have been proposed and ac... 详细信息
来源: 评论
graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
收藏 引用
2021年
作者: Claudio Stamile Aldo Marzullo Enrico Deusebio
Build machine learning algorithms using graph data and efficiently exploit topological information within your modelsKey FeaturesImplement machine learning techniques and algorithms in graph dataIdentify the relations...
来源: 评论
Every Document Owns Its Structure: Inductive Text Classification via graph Neural Networks  58
Every Document Owns Its Structure: Inductive Text Classifica...
收藏 引用
58th Annual Meeting of the Association-for-Computational-Linguistics (ACL)
作者: Zhang, Yufeng Yu, Xueli Cui, Zeyu Wu, Shu Wen, Zhongzhen Wang, Liang Chinese Acad Sci Inst Automat Beijing Peoples R China Xi An Jiao Tong Univ Xian Peoples R China
Text classification is fundamental in natural language processing (NLP), and graph Neural Networks (GNN) are recently applied in this task. However, the existing graph-based works can neither capture the contextual wo... 详细信息
来源: 评论
REPRESENTATION LEARNING OF REMOTE SENSING KNOWLEDGE graph FOR ZERO-SHOT REMOTE SENSING IMAGE SCENE CLASSIFICATION
REPRESENTATION LEARNING OF REMOTE SENSING KNOWLEDGE GRAPH FO...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Li, Yansheng Kong, Deyu Zhang, Yongjun Chen, Ruixian Chen, Jingdong Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Hubei Peoples R China Ant Grp Hangzhou Zhejiang Peoples R China
Although deep learning has revolutionized remote sensing image scene classification, current deep learning-based approaches highly depend on the massive supervision of the predetermined scene categories and have disap... 详细信息
来源: 评论
Better Combine Them Together! Integrating Syntactic Constituency and Dependency Representations for Semantic Role Labeling
Better Combine Them Together! Integrating Syntactic Constitu...
收藏 引用
Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on natural language processing (IJCNLP) / 6th workshop on Representation Learning for NLP (RepL4NLP)
作者: Fei, Hao Wu, Shengqiong Ren, Yafeng Li, Fei Ji, Donghong Wuhan Univ Sch Cyber Sci & Engn Dept Key Lab Aerosp Informat Secur & Trusted Comp Minist Educ Wuhan Peoples R China Guangdong Univ Foreign Studies Lab Language & Artificial Intelligence Guangzhou Peoples R China
Structural syntax knowledge has been proven effective for semantic role labeling (SRL), while existing works mostly use only one singleton syntax, such as either syntactic dependency or constituency tree. In this pape... 详细信息
来源: 评论