咨询与建议

限定检索结果

文献类型

  • 760 篇 会议
  • 177 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 960 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 778 篇 工学
    • 735 篇 计算机科学与技术...
    • 469 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 控制科学与工程
    • 37 篇 化学工程与技术
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 99 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 47 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 13 篇 knowledge graphs
  • 12 篇 natural language...
  • 12 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 university of sc...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 887 篇 英文
  • 42 篇 其他
  • 32 篇 中文
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
960 条 记 录,以下是491-500 订阅
排序:
Knowledge graph Alignment with Entity-Pair Embedding
Knowledge Graph Alignment with Entity-Pair Embedding
收藏 引用
Conference on Empirical methods in natural language processing (EMNLP)
作者: Wang, Zhichun Yang, Jinjian Ye, Xiaoju Beijing Normal Univ Sch Artificial Intelligence Beijing Peoples R China Minist Educ Engn Res Ctr Intelligent Technol & Educ Applicat Beijing Peoples R China
Knowledge graph (KG) alignment is to match entities in different KGs, which is important to knowledge fusion and integration. Recently, a number of embedding-based approaches for KG alignment have been proposed and ac... 详细信息
来源: 评论
graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
收藏 引用
2021年
作者: Claudio Stamile Aldo Marzullo Enrico Deusebio
Build machine learning algorithms using graph data and efficiently exploit topological information within your modelsKey FeaturesImplement machine learning techniques and algorithms in graph dataIdentify the relations...
来源: 评论
Every Document Owns Its Structure: Inductive Text Classification via graph Neural Networks  58
Every Document Owns Its Structure: Inductive Text Classifica...
收藏 引用
58th Annual Meeting of the Association-for-Computational-Linguistics (ACL)
作者: Zhang, Yufeng Yu, Xueli Cui, Zeyu Wu, Shu Wen, Zhongzhen Wang, Liang Chinese Acad Sci Inst Automat Beijing Peoples R China Xi An Jiao Tong Univ Xian Peoples R China
Text classification is fundamental in natural language processing (NLP), and graph Neural Networks (GNN) are recently applied in this task. However, the existing graph-based works can neither capture the contextual wo... 详细信息
来源: 评论
REPRESENTATION LEARNING OF REMOTE SENSING KNOWLEDGE graph FOR ZERO-SHOT REMOTE SENSING IMAGE SCENE CLASSIFICATION
REPRESENTATION LEARNING OF REMOTE SENSING KNOWLEDGE GRAPH FO...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Li, Yansheng Kong, Deyu Zhang, Yongjun Chen, Ruixian Chen, Jingdong Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Hubei Peoples R China Ant Grp Hangzhou Zhejiang Peoples R China
Although deep learning has revolutionized remote sensing image scene classification, current deep learning-based approaches highly depend on the massive supervision of the predetermined scene categories and have disap... 详细信息
来源: 评论
Better Combine Them Together! Integrating Syntactic Constituency and Dependency Representations for Semantic Role Labeling
Better Combine Them Together! Integrating Syntactic Constitu...
收藏 引用
Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on natural language processing (IJCNLP) / 6th workshop on Representation Learning for NLP (RepL4NLP)
作者: Fei, Hao Wu, Shengqiong Ren, Yafeng Li, Fei Ji, Donghong Wuhan Univ Sch Cyber Sci & Engn Dept Key Lab Aerosp Informat Secur & Trusted Comp Minist Educ Wuhan Peoples R China Guangdong Univ Foreign Studies Lab Language & Artificial Intelligence Guangzhou Peoples R China
Structural syntax knowledge has been proven effective for semantic role labeling (SRL), while existing works mostly use only one singleton syntax, such as either syntactic dependency or constituency tree. In this pape... 详细信息
来源: 评论
AUEB-NLP at BioASQ 8: Biomedical Document and Snippet Retrieval  11th
AUEB-NLP at BioASQ 8: Biomedical Document and Snippet Retrie...
收藏 引用
11th Conference and Labs of the Evaluation Forum, CLEF 2020
作者: Pappas, Dimitris Stavropoulos, Petros Androutsopoulos, Ion Department of Informatics Athens University of Economics and Business Greece Institute for Language and Speech Processing Research Center ‘Athena’ Greece
We present the submissions of AUEB’s NLP group to the BIOASQ 8 document and snippet retrieval tasks. We relied mostly on JPDRMM, our top performing model of BIOASQ 7, but we also tested feeding JPDRMM with word embed... 详细信息
来源: 评论
An Causal XAI Diagnostic Model for Breast Cancer based on Mammography Reports
An Causal XAI Diagnostic Model for Breast Cancer Based on Ma...
收藏 引用
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
作者: Chen, Dehua Zhao, Hongjin He, Jianrong Pan, Qiao Zhao, Weiliang School Computer Science and Technology Donghua University Shanghai China Comprehensive Breast Health Center Ruijin Hospital Shanghai China School Computer Science and Technology Macquarie University Sydney Australia
Breast cancer has become one of the most common malignant tumors in women worldwide, and it seriously threatens women's physical and mental health. In recent years, with the development of Artificial Intelligence(... 详细信息
来源: 评论
Deep Cognitive Reasoning Network for Multi-hop Question Answering over Knowledge graphs
Deep Cognitive Reasoning Network for Multi-hop Question Answ...
收藏 引用
Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on natural language processing (IJCNLP) / 6th workshop on Representation Learning for NLP (RepL4NLP)
作者: Cai, Jianyu Zhang, Zhanqiu Wu, Feng Wang, Jie Univ Sci & Technol China Inst Artificial Intelligence Hefei Comprehens Natl Sci Ctr Hefei Anhui Peoples R China
Knowledge graphs (KGs) provide human knowledge with nodes and edges being entities and relations among them, respectively. Multi-hop question answering over KGs-which aims to find answer entities of given questions th... 详细信息
来源: 评论
Incorporating Temporal Information in Entailment graph Mining  14
Incorporating Temporal Information in Entailment Graph Minin...
收藏 引用
14th workshop on graph-based methods for natural language processing, Textgraphs 2020, in conjunction with the 28th International Conference on Computational Linguistics, COLING 2020
作者: Guillou, Liane De Vroe, Sander Bijl Hosseini, Mohammad Javad Johnson, Mark Steedman, Mark University of Edinburgh United Kingdom The Alan Turing Institute United Kingdom Macquarie University Australia
We present a novel method for injecting temporality into entailment graphs to address the problem of spurious entailments, which may arise from similar but temporally distinct events involving the same pair of entitie...
来源: 评论
Rule-Aware Reinforcement Learning for Knowledge graph Reasoning
Rule-Aware Reinforcement Learning for Knowledge Graph Reason...
收藏 引用
Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on natural language processing (IJCNLP) / 6th workshop on Representation Learning for NLP (RepL4NLP)
作者: Hou, Zhongni Jin, Xiaolong Li, Zixuan Bai, Long Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing Peoples R China Chinese Acad Sci Inst Comp Technol CAS Key Lab Network Data Sci & Technol Beijing Peoples R China
Multi-hop reasoning is an effective and explainable approach to predicting missing facts in Knowledge graphs (KGs). It usually adopts the Reinforcement Learning (RL) framework and searches over the KG to find an evide... 详细信息
来源: 评论