咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 951 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 732 篇 计算机科学与技术...
    • 469 篇 软件工程
    • 105 篇 信息与通信工程
    • 58 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 13 篇 土木工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 建筑学
    • 12 篇 生物医学工程(可授...
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 225 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 33 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 171 篇 管理学
    • 137 篇 图书情报与档案管...
    • 43 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 120 篇 knowledge graph
  • 96 篇 natural language...
  • 88 篇 graphic methods
  • 85 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 901 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
951 条 记 录,以下是51-60 订阅
排序:
Neural speech translation using lattice transformations and graph networks  13
Neural speech translation using lattice transformations and ...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Beck, Daniel Cohn, Trevor Haffari, Gholamreza School of Computing and Information Systems University of Melbourne Australia Faculty of Information Technology Monash University Australia
Speech translation systems usually follow a pipeline approach, using word lattices as an intermediate representation. However, previous work assume access to the original transcriptions used to train the ASR system, w... 详细信息
来源: 评论
Relation prediction for unseen-entities using entity-word graphs  13
Relation prediction for unseen-entities using entity-word gr...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Tagawa, Yuki Taniguchi, Motoki Miura, Yasuhide Taniguchi, Tomoki Ohkuma, Tomoko Yamamoto, Takayuki Nemoto, Keiichi Fuji Xerox Co. Ltd. Japan
Knowledge graphs (KGs) are generally used for various NLP tasks. However, as KGs still miss some information, it is necessary to develop Knowledge graph Completion (KGC) methods. Most KGC researches do not focus on th... 详细信息
来源: 评论
Layerwise relevance visualization in convolutional text graph classifiers  13
Layerwise relevance visualization in convolutional text grap...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Schwarzenberg, Robert Hübner, Marc Harbecke, David Alt, Christoph Hennig, Leonhard Berlin Germany
Representations in the hidden layers of Deep Neural Networks (DNN) are often hard to interpret since it is difficult to project them into an interpretable domain. graph Convolutional Networks (GCN) allow this projecti... 详细信息
来源: 评论
Reasoning over paths via knowledge base completion  13
Reasoning over paths via knowledge base completion
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Sudhahar, Saatviga Roberts, Ian Pierleoni, Andrea Healx Cambridge United Kingdom
Reasoning over paths in large scale knowledge graphs is an important problem for many applications. In this paper we discuss a simple approach to automatically build and rank paths between a source and target entity p... 详细信息
来源: 评论
Cohesion graph based approach for unsupervised recognition of literal and non-literal use of multiword expressions
Cohesion graph based approach for unsupervised recognition o...
收藏 引用
4th workshop on graph-based methods for natural language processing, Textgraphs 2009
作者: Li, Linlin Sporleder, Caroline Saarland University Postfach 15 11 50 66041 Saarbrücken Germany Germany
We present a graph-based model for representing the lexical cohesion of a discourse. In the graph structure, vertices correspond to the content words of a text and edges connecting pairs of words encode how closely th... 详细信息
来源: 评论
Essentia: Mining domain-specific paraphrases with word-alignment graphs  13
Essentia: Mining domain-specific paraphrases with word-align...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Ma, Danni Chen, Chen Golshan, Behzad Tan, Wang-Chiew Department of Computer and Information Science University of Pennsylvania United States Megagon Labs
Paraphrases are important linguistic resources for a wide variety of NLP applications. Many techniques for automatic paraphrase mining from general corpora have been proposed. While these techniques are successful at ... 详细信息
来源: 评论
Chains-of-reasoning at textgraphs 2019 shared task: Reasoning over chains of facts for explainable multi-hop inference  13
Chains-of-reasoning at textgraphs 2019 shared task: Reasonin...
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Godbole, Ameya Das, Rajarshi Zaheer, Manzil Dhuliawala, Shehzaad McCallum, Andrew University of Massachusetts Amherst United States Google Research United States Microsoft Research Montreal Canada
This paper describes our submission to the shared task1 on "Multi-hop Inference Explanation Regeneration" in Textgraphs workshop at EMNLP 2019 (Jansen and Ustalov, 2019). Our system identifies chains of fact... 详细信息
来源: 评论
graph enhanced cross-domain text-to-SQL generation  13
Graph enhanced cross-domain text-to-SQL generation
收藏 引用
13th workshop on graph-based methods for natural language processing, Textgraphs 2019, in conjunction with the 2019 Conference on Empirical methods in natural language processing and 9th International Joint Conference on natural language processing, EMNLP-IJCNLP 2019
作者: Huo, Siyu Ma, Tengfei Chen, Jie Chang, Maria Wu, Lingfei Witbrock, Michael IBM Research United States IBM Research AI United States MIT-IBM Watson AI Lab United States University of Auckland New Zealand
Semantic parsing is a fundamental problem in natural language understanding, as it involves the mapping of natural language to structured forms such as executable queries or logic-like knowledge representations. Exist... 详细信息
来源: 评论
JobimText visualizer: A graph-based Approach to Contextualizing Distributional Similarity  8
JobimText visualizer: A Graph-based Approach to Contextualiz...
收藏 引用
8th workshop on graph-based methods for natural language processing, Textgraphs 2013, at the Conference on Empirical methods in natural language processing, EMNLP 2013
作者: Gliozzo, Alfio Biemann, Chris Riedl, Martin Coppola, Bonaventura Glass, Michael R. Hatem, Matthew IBM T.J. Watson Research Yorktown HeightsNY10598 United States FG Language Technology CS Dept. TU Darmstadt Darmstadt64289 Germany
We introduce an interactive visualization component for the JoBimText project. JoBimText is an open source platform for large-scale distributional semantics based on graph representations. first we describe the underl... 详细信息
来源: 评论
Learning of graph-based question answering rules  1
Learning of graph-based question answering rules
收藏 引用
1st workshop on graph-based Algorithms for natural language processing, Textgraphs 2006 at Human language Technologies
作者: Mollá, Diego Department of Computing Macquarie University Sydney2109 Australia
In this paper we present a graph-based approach to question answering. The method assumes a graph representation of question sentences and text sentences. Question answering rules are automatically learnt from a train... 详细信息
来源: 评论