咨询与建议

限定检索结果

文献类型

  • 760 篇 会议
  • 177 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 960 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 778 篇 工学
    • 735 篇 计算机科学与技术...
    • 469 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 控制科学与工程
    • 37 篇 化学工程与技术
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 99 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 47 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 13 篇 knowledge graphs
  • 12 篇 natural language...
  • 12 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 university of sc...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 887 篇 英文
  • 42 篇 其他
  • 32 篇 中文
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
960 条 记 录,以下是631-640 订阅
排序:
Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation
收藏 引用
JMIR MEDICAL INFORMATICS 2020年 第5期8卷 e17637页
作者: Zhang, Zhichang Zhu, Lin Yu, Peilin Univ Northwest Normal Coll Comp Sci & Engn 967 Arming East Rd Lanzhou Peoples R China
Background: Medical entity recognition is a key technology that supports the development of smart medicine. Existing methods on English medical entity recognition have undergone great development, but their progress i... 详细信息
来源: 评论
Improving rare disease classification using imperfect knowledge graph  7
Improving rare disease classification using imperfect knowle...
收藏 引用
2nd International workshop on Health natural language processing (HealthNLP)
作者: Li, Xuedong Wang, Yue Wang, Dongwu Yuan, Walter Peng, Dezhong Mei, Qiaozhu Sichuan Univ Coll Comp Sci Chengdu Peoples R China Univ North Carolina Chapel Hill Sch Informat & Lib Sci Chapel Hill NC USA MobLab Inc Pasadena CA USA Univ Michigan Sch Informat Ann Arbor MI 48109 USA
Background: Accurately recognizing rare diseases based on symptom description is an important task in patient triage, early risk stratification, and target therapies. However, due to the very nature of rare diseases, ... 详细信息
来源: 评论
Fusing Document, Collection and Label graph-based Representations with Word Embeddings for Text Classification  12
Fusing Document, Collection and Label Graph-based Representa...
收藏 引用
12th workshop on graph-based methods for natural language processing, Textgraphs 2018 - in conjunction with the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human, NAACL HLT 2018
作者: Skianis, Konstantinos Malliaros, Fragkiskos D. Vazirgiannis, Michalis École Polytechnique France CentraleSupélec and Inria Saclay France
Contrary to the traditional Bag-of-Words approach, we consider the graph-of-Words (GoW) model in which each document is represented by a graph that encodes relationships between the different terms. based on this form... 详细信息
来源: 评论
Findings of the third workshop on neural generation and translation  3
Findings of the third workshop on neural generation and tran...
收藏 引用
3rd workshop on Neural Generation and Translation, EMNLP-IJCNLP 2019
作者: Hayashi, Hiroaki Oda, Yusuke Birch, Alexandra Konstas, Ioannis Finch, Andrew Luong, Minh-Thang Neubig, Graham Sudoh, Katsuhito Carnegie Mellon University United States Google Brain University of Edinburgh United Kingdom Heriot-Watt University United Kingdom Apple Nara Institute of Science and Technology Japan
This document describes the findings of the Third workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical methods in natural language processing (EMNLP 2019). first, ... 详细信息
来源: 评论
Search for K: Assessing Five Topic-Modeling Approaches to 120,000 Canadian Articles
Search for K: Assessing Five Topic-Modeling Approaches to 12...
收藏 引用
IEEE International Conference on Big Data (Big Data)
作者: Fu, Qiang Zhuang, Yufan Gu, Jiaxin Zhu, Yushu Qin, Huihui Guo, Xin Univ British Columbia Dept Sociol Vancouver BC Canada Columbia Univ Data Sci Inst New York NY USA Simon Fraser Univ Urban Studies Program Vancouver BC Canada Simon Fraser Univ Sch Publ Policy Vancouver BC Canada Hong Kong Polytech Univ Dept Appl Math Hong Kong Peoples R China
Topic modeling has been an important field in natural language processing (NLP) and recently witnessed great methodological advances. Yet, the development of topic modeling is still, if not increasingly, challenged by... 详细信息
来源: 评论
基于Span方法和多叉解码树的实体关系抽取
收藏 引用
计算机技术与发展 2023年 第5期33卷 152-158,166页
作者: 张鑫 冼广铭 梅灏洋 周岑钰 刘赢方 华南师范大学软件学院 广东佛山528225
实体关系抽取作为自然语言处理领域的一项关键技术,在构建知识图谱、信息检索等领域有着极为重要的意义。然实体关系抽取模型普遍存在词与词之间依赖性运用不足、实体识别效果低下以及单解码带来的三元组强行执行某种不必要顺序的问题... 详细信息
来源: 评论
Mining the Biographical Dictionary of Republican China, from Print to Network Exploration  3
Mining the Biographical Dictionary of Republican China, from...
收藏 引用
3rd Conference on Biographical Data in a Digital World, BD 2019
作者: Magistry, Pierre Armand, Cécile Henriot, Christian Aix Marseille Univ CNRS IrAsia Marseille France
This article describes preliminary experiments conducted in the context of the ENP-China project, which examines the transformation of elites in modern China. The project is centered on exploiting information from unt... 详细信息
来源: 评论
Automatic Perturbation Analysis on General Computational graphs
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Kaidi Shi, Zhouxing Zhang, Huan Huang, Minlie Chang, Kai-Wei Kailkhura, Bhavya Lin, Xue Hsieh, Cho-Jui Northeastern University Tsinghua University UCLA
Linear relaxation based perturbation analysis for neural networks, which aims to compute tight linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness ve... 详细信息
来源: 评论
Efficient Generation and processing of Word Co-occurrence Networks Using corpus2graph  12
Efficient Generation and Processing of Word Co-occurrence Ne...
收藏 引用
12th workshop on graph-based methods for natural language processing, Textgraphs 2018 - in conjunction with the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human, NAACL HLT 2018
作者: Zhang, Zheng Yin, Ruiqing Zweigenbaum, Pierre LIMSI CNRS Université Paris-Saclay Orsay France LRI Univ. Paris-Sud CNRS Université Paris-Saclay Orsay France
Corpus2graph is an open-source NLP-application-oriented Python package that generates a word co-occurrence network from a large corpus. It not only contains different built-in methods to preprocess words, analyze sent... 详细信息
来源: 评论
Neural graph Embedding methods for natural language processing
Neural Graph Embedding methods for Natural Language Processi...
收藏 引用
作者: Shikhar Vashishth Indian Institute of Science
学位级别:博士
graphs are all around us, ranging from citation and social networks to Knowledge graphs (KGs). They are one of the most expressive data structures which have been used to model a variety of problems. Knowledge graphs ...
来源: 评论