咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 8 册 图书

馆藏范围

  • 951 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 97 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 24 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 901 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
951 条 记 录,以下是851-860 订阅
排序:
WalkLM: a uniform language model fine-tuning framework for attributed graph embedding  23
WalkLM: a uniform language model fine-tuning framework for a...
收藏 引用
proceedings of the 37th International Conference on Neural Information processing Systems
作者: Yanchao Tan Zihao Zhou Hang Lv Weiming Liu Carl Yang College of Computer and Data Science Fuzhou University Fuzhou China College of Computer Science Zhejiang University Hangzhou China Department of Computer Science Emory University Atlanta
graphs are widely used to model interconnected entities and improve downstream predictions in various real-world applications. However, real-world graphs nowadays are often associated with complex attributes on multip...
来源: 评论
Referring Expression Comprehension: A Survey of methods and Datasets
arXiv
收藏 引用
arXiv 2020年
作者: Qiao, Yanyuan Deng, Chaorui Wu, Qi Australian Centre for Visual Technologies School of Computer Science University of Adelaide AdelaideSA5005 Australia
Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object label... 详细信息
来源: 评论
Lang3DSG: language-based contrastive pre-training for 3D Scene graph prediction
Lang3DSG: Language-based contrastive pre-training for 3D Sce...
收藏 引用
International Conference on 3D Imaging, Modeling, processing, Visualization and Transmission (3DIMPVT)
作者: Sebastian Koch Pedro Hermosilla Narunas Vaskevicius Mirco Colosi Timo Ropinski Bosch Center for Artificial Intelligence Robert Bosch Corporate Research University of Ulm TU Vienna
3D scene graphs are an emerging 3D scene representation, that models both the objects present in the scene as well as their relationships. However, learning 3D scene graphs is a challenging task because it requires no... 详细信息
来源: 评论
Improving Generation of Sentiment Commonsense by Bias Mitigation
Improving Generation of Sentiment Commonsense by Bias Mitiga...
收藏 引用
International Conference on Big Data and Smart Computing (BIGCOMP)
作者: JinKyu Lee Jihie Kim Department of Artificial Intelligence Dongguk University Seoul Korea
Commonsense knowledge graphs (CSKG) are crucial for artificial intelligence systems to understand natural language. Recently, with the construction of COMET (Commonsense Transformer) and ATOMIC2020, a comprehensive co... 详细信息
来源: 评论
graph language Model (GLM): A new graph-based approach to detect social instabilities
arXiv
收藏 引用
arXiv 2024年
作者: de Oliveira, Wallyson Lemes Shamsaddini, Vahid Ghofrani, Ali Inda, Rahul Singh Veeramaneni, Jithendra Sai Voutaz, Étienne Giotto.ai SA Place de la Gare 4 Lausanne1004 Switzerland Armasuisse Feuerwerkerstrasse 39 Thun3602 Switzerland
This scientific report presents a novel methodology for the early prediction of important political events using News datasets. The methodology leverages natural language processing, graph theory, clique analysis, and... 详细信息
来源: 评论
Large language Models as Topological Structure Enhancers for Text-Attributed graphs
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Shengyin Ren, Yuxiang Chen, Jiehao Ma, Chen Department of Computer Science City University of Hong Kong Hong Kong Advance Computing and Storage Lab Huawei Technologies Shanghai China China Academy of Industrial Internet Beijing China
Inspired by the success of Large language Models (LLMs) in natural language processing (NLP), recent works have begun investigating the potential of applying LLMs in graph learning. However, most existing work focuses... 详细信息
来源: 评论
Every document owns its structure: Inductive text classification via graph neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Yufeng Yu, Xueli Cui, Zeyu Wu, Shu Wen, Zhongzhen Wang, Liang Institute of Automation Chinese Academy of Sciences Xi’an Jiaotong University
Text classification is fundamental in natural language processing (NLP), and graph Neural Networks (GNN) are recently applied in this task. However, the existing graph-based works can neither capture the contextual wo... 详细信息
来源: 评论
Contextualized Knowledge-aware Attentive Neural Network: Enhancing Answer Selection with Knowledge
收藏 引用
ACM TRANSACTIONS ON INFORMATION SYSTEMS 2022年 第1期40卷 2-2页
作者: Deng, Yang Xie, Yuexiang Li, Yaliang Yang, Min Lam, Wai Shen, Ying Chinese Univ Hong Kong Dept Syst Engn & Engn Management Hong Kong Peoples R China Alibaba Grp Hangzhou Peoples R China Alibaba Grp Bellevue WA USA Chinese Acad Sci SIAT Shenzhen Peoples R China Sun Yat Sen Univ Sch Intelligent Syst Engn Guangzhou Peoples R China
Answer selection, which is involved in many natural language processing applications, such as dialog systems and question answering (QA), is an important yet challenging task in practice, since conventional methods ty... 详细信息
来源: 评论
EXECUTABLE first-ORDER QUERIES IN THE LOGIC OF INFORMATION FLOWS ∗
收藏 引用
LOGICAL methods IN COMPUTER SCIENCE 2024年 第2期20卷
作者: Aamer, Heba A. Bogaerts, Bart Surinx, Dimitri Ternovska, Eugenia Van Den Bussche, Jan Vrije Univ Brussel Brussels Belgium Hasselt Univ Hasselt Belgium Simon Fraser Univ Burnaby BC Canada
. The logic of information flows (LIF) has recently been proposed as a general framework in the field of knowledge representation. In this framework, tasks of procedural nature can still be modeled in a declarative, l... 详细信息
来源: 评论
Knowledge graph Enhanced Large language Model Editing
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Mengqi Ye, Xiaotian Liu, Qiang Ren, Pengjie Wu, Shu Chen, Zhumin School of Computer Science and Technology Shandong University China School of Computer Science Beijing University of Posts and Telecommunications China Center for Research on Intelligent Perception and Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks, yet their efficacy is hampered by inaccuracies and outdated knowledge. Model editing emerges as a promising solution to ad... 详细信息
来源: 评论