咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 4 册 图书

馆藏范围

  • 947 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 97 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 23 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理
  • 9 篇 data mining

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 897 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
947 条 记 录,以下是81-90 订阅
排序:
Speaker identification combining role knowledge graph correction and contextual block attention
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 284卷
作者: Tao, Ye Wang, Fei Cai, Yanchang Li, Wei Qingdao Univ Sci & Technol Coll Informat Sci & Technol Qingdao 26606 Shandong Peoples R China China Telecom Res Inst 3 Penglaiyuan South St Beijing Peoples R China
Character dialogue play a crucial role in novels, serving as a key element for understanding both the plot and character relationships. With advancements in artificial intelligence and natural language processing, dia... 详细信息
来源: 评论
Learning Relation-Enhanced Hierarchical Solver for Math Word Problems
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024年 第10期35卷 13830-13844页
作者: Lin, Xin Huang, Zhenya Zhao, Hongke Chen, Enhong Liu, Qi Lian, Defu Li, Xin Wang, Hao Univ Sci & Technol China Sch Comp Sci & Technol Anhui Prov Key Lab Big Data Anal & Applicat Hefei Peoples R China State Key Lab Cognit Intelligence Hefei 230088 Peoples R China Tianjin Univ Coll Management & Econ Tianjin 300072 Peoples R China Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230027 Peoples R China iFLYTEK Co Ltd Artificial Intelligence Res Inst Hefei 230088 Peoples R China
Automatically solving math word problems (MWPs) is a challenging task for artificial intelligence (AI) and machine learning (ML) research, which aims to answer the problem with a mathematical expression. Many existing... 详细信息
来源: 评论
MOAT: graph Prompting for 3D Molecular graphs  24
MOAT: Graph Prompting for 3D Molecular Graphs
收藏 引用
33rd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Long, Qingqing Yan, Yuchen Cui, Wentao Ju, Wei Zhu, Zhihong Zhou, Yuanchun Wang, Xuezhi Xiao, Meng Chinese Acad Sci CNIC Beijing Peoples R China UCAS Beijing Peoples R China UCAS HIAS Beijing Peoples R China Peking Univ Beijing Peoples R China Sichuan Univ Chengdu Sichuan Peoples R China
Molecular property prediction stands as a cornerstone task in AI-driven drug design and discovery, wherein the atoms within a molecule serve as nodes, collectively forming a graph with bonds acting as edges. Given the... 详细信息
来源: 评论
Investigating natural and Artificial Dynamics in graph Data Mining and Machine Learning  23
Investigating Natural and Artificial Dynamics in Graph Data ...
收藏 引用
32nd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Fu, Dongqi Univ Illinois Dept Comp Sci Urbana IL 61801 USA
The complexity of relationships between entities is increasing in the era of big data, leading to a growing interest in graph (network) data, owing to its ability to encode intricate relational information. graph data... 详细信息
来源: 评论
Large language Models for Few-Shot Automatic Term Extraction  29th
Large Language Models for Few-Shot Automatic Term Extraction
收藏 引用
29th International Conference on Applications of natural language to Information Systems (NLDB)
作者: Banerjee, Shubhanker Chakravarthi, Bharathi Raja McCrae, John Philip ADAPT Ctr Dublin Ireland Univ Galway Sch Comp Sci Galway Ireland
Automatic term extraction is the process of identifying domain-specific terms in a text using automated algorithms and is a key first step in ontology learning and knowledge graph creation. Large language models have ... 详细信息
来源: 评论
Label-aware debiased causal reasoning for natural language Inference
收藏 引用
AI OPEN 2024年 第1期5卷 70-78页
作者: Zhang, Kun Zhang, Dacao Wu, Le Hong, Richang Zhao, Ye Wang, Meng Hefei Univ Technol Sch Comp Sci & Informat Engn Hefei 230601 Anhui Peoples R China Hefei Univ Technol Key Lab Knowledge Engn Big Data Hefei 230601 Anhui Peoples R China Hefei Comprehens Natl Sci Ctr Inst Dataspace Hefei 230009 Anhui Peoples R China
Recently, researchers have argued that the impressive performance of natural language Inference (NLI) models is highly due to the spurious correlations existing in training data, which makes models vulnerable and poor... 详细信息
来源: 评论
IJS at Textgraphs-16 natural language Premise Selection Task: Will Contextual Information Improve natural language Premise Selection?  16
IJS at TextGraphs-16 Natural Language Premise Selection Task...
收藏 引用
16th workshop on graph-based methods for natural language processing, Textgraphs 2022, in conjunction with the 29th International Conference on Computational Linguistics, COLING 2022
作者: Tran, Hanh Thi Hong Martinc, Matej Doucet, Antoine Pollak, Senja Jožef Stefan Institute Slovenia Jozef Stefan International Postgraduate School Slovenia University of La Rochelle France
natural language Premise Selection (NLPS) is a mathematical natural language processing (NLP) task that retrieves a set of useful relevant premises to support the end-user finding the proof for a particular statement.... 详细信息
来源: 评论
Deep Learning on graphs: methods and Applications (DLG-KDD2023)  23
Deep Learning on Graphs: Methods and Applications (DLG-KDD20...
收藏 引用
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
作者: Wu, Lingfei Pei, Jian Tang, Jiliang Xia, Yinglong Guo, Xiaojie Pinterest San Francisco CA 94107 USA Duke Univ Durham NC USA Michigan State Univ E Lansing MI 48824 USA Meta Menlo Pk CA USA IBM TJ Watson Res Ctr Yorktown Height NY USA
Deep Learning models are at the core of research in Artificial Intelligence research today. A tide in research for deep learning on graphs or graph neural networks. This wave of research at the intersection of graph t... 详细信息
来源: 评论
SustaiNLP 2022 - 3rd workshop on Simple and Efficient natural language processing, proceedings of the workshop
SustaiNLP 2022 - 3rd Workshop on Simple and Efficient Natura...
收藏 引用
3rd workshop on Simple and Efficient natural language processing, SustaiNLP 2022
The proceedings contain 8 papers. The topics discussed include: efficient two-stage progressive quantization of BERT;KGRefiner: knowledge graph refinement for improving accuracy of translational link prediction method...
来源: 评论
SumTablets : A Transliteration Dataset of Sumerian Tablets  1
SumTablets : A Transliteration Dataset of Sumerian Tablets
收藏 引用
1st workshop on Machine Learning for Ancient languages, ML4AL 2024
作者: Simmons, Cole Martinez, Richard Diehl Jurafsky, Dan Stanford University United States University of Cambridge United Kingdom
Sumerian transliteration is a conventional system for representing a scholar’s interpretation of a tablet in the Latin script. Thanks to visionary digital Assyriology projects such as ETCSL, CDLI, and Oracc, a large ... 详细信息
来源: 评论