咨询与建议

限定检索结果

文献类型

  • 753 篇 会议
  • 175 篇 期刊文献
  • 15 篇 学位论文
  • 4 册 图书

馆藏范围

  • 947 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 774 篇 工学
    • 731 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 105 篇 信息与通信工程
    • 59 篇 电气工程
    • 51 篇 生物工程
    • 37 篇 化学工程与技术
    • 35 篇 控制科学与工程
    • 19 篇 机械工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 土木工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 建筑学
    • 9 篇 农业工程
    • 8 篇 网络空间安全
    • 7 篇 仪器科学与技术
  • 224 篇 理学
    • 114 篇 数学
    • 63 篇 生物学
    • 40 篇 化学
    • 32 篇 物理学
    • 25 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 172 篇 管理学
    • 137 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 74 篇 文学
    • 72 篇 外国语言文学
  • 43 篇 医学
    • 27 篇 基础医学(可授医学...
    • 18 篇 临床医学
  • 24 篇 法学
    • 24 篇 社会学
  • 14 篇 农学
    • 10 篇 作物学
  • 9 篇 教育学
    • 9 篇 教育学
  • 3 篇 经济学

主题

  • 121 篇 knowledge graph
  • 97 篇 natural language...
  • 88 篇 graphic methods
  • 84 篇 natural language...
  • 45 篇 semantics
  • 34 篇 graph neural net...
  • 28 篇 deep learning
  • 23 篇 computational li...
  • 18 篇 syntactics
  • 17 篇 machine learning
  • 16 篇 embeddings
  • 13 篇 graph neural net...
  • 12 篇 natural language...
  • 12 篇 knowledge graphs
  • 11 篇 information retr...
  • 10 篇 知识图谱
  • 10 篇 task analysis
  • 10 篇 iterative method...
  • 10 篇 自然语言处理
  • 9 篇 data mining

机构

  • 7 篇 alibaba group
  • 6 篇 alibaba grp peop...
  • 4 篇 yale university ...
  • 4 篇 中国科学院大学
  • 4 篇 carnegie mellon ...
  • 4 篇 ibm research uni...
  • 3 篇 university of sc...
  • 3 篇 chinese acad sci...
  • 3 篇 sichuan univ col...
  • 3 篇 university of os...
  • 3 篇 carnegie mellon ...
  • 3 篇 harbin inst tech...
  • 3 篇 univ notre dame ...
  • 3 篇 univ edinburgh e...
  • 3 篇 school of comput...
  • 3 篇 wuhan university
  • 3 篇 univ chinese aca...
  • 3 篇 school of comput...
  • 3 篇 ibm research
  • 3 篇 school of comput...

作者

  • 6 篇 ji heng
  • 5 篇 biemann chris
  • 5 篇 li irene
  • 4 篇 zhou jie
  • 4 篇 lam wai
  • 4 篇 mccallum andrew
  • 4 篇 wang liang
  • 4 篇 strube michael
  • 4 篇 neubig graham
  • 4 篇 wu lingfei
  • 4 篇 bing lidong
  • 4 篇 wu shu
  • 4 篇 liu ting
  • 4 篇 zhang qi
  • 4 篇 tang jiliang
  • 4 篇 yang min
  • 4 篇 miwa makoto
  • 4 篇 jiang meng
  • 3 篇 pei jian
  • 3 篇 zhang bowen

语言

  • 897 篇 英文
  • 32 篇 中文
  • 19 篇 其他
  • 1 篇 法文
检索条件"任意字段=Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing"
947 条 记 录,以下是891-900 订阅
排序:
Timestamped graphs: Evolutionary models of text for multi-document summarization
Timestamped graphs: Evolutionary models of text for multi-do...
收藏 引用
2nd workshop on graph-based Algorithms for natural language processing, Textgraphs 2007
作者: Lin, Ziheng Kan, Min-Yen School of Computing National University of Singapore Singapore 177543 Singapore
Current graph-based approaches to automatic text summarization, such as LexRank and TextRank, assume a static graph which does not model how the input texts emerge. A suitable evolutionary text graph model may impart ... 详细信息
来源: 评论
Multi-level association graphs - A new graph-based model for information retrieval
Multi-level association graphs - A new graph-based model for...
收藏 引用
2nd workshop on graph-based Algorithms for natural language processing, Textgraphs 2007
作者: Witschel, Hans Friedrich NLP department University of Leipzig P.O. Box 100920 04009 Leipzig Germany
This paper introduces multi-level association graphs (MLAGs), a new graph-based framework for information retrieval (IR). The goal of that framework is twofold: first, it is meant to be a meta model of IR, i.e. it sub... 详细信息
来源: 评论
Unigram language models using diffusion smoothing over graphs
Unigram language models using diffusion smoothing over graph...
收藏 引用
2nd workshop on graph-based Algorithms for natural language processing, Textgraphs 2007
作者: Jedynak, Bruno Karakos, Damianos Dept. of Appl. Mathematics and Statistics Center for Imaging Sciences Johns Hopkins University Baltimore MD 21218-2686 United States Dept. of Electrical and Computer Engineering Center for Language and Speech Processing Johns Hopkins University Baltimore MD 21218-2686 United States
We propose to use graph-based diffusion techniques with data-dependent kernels to build unigram language models. Our approach entails building graphs, where each vertex corresponds uniquely to a word from a closed voc... 详细信息
来源: 评论
Vertex degree distribution for the graph of word co-occurrences in Russian
Vertex degree distribution for the graph of word co-occurren...
收藏 引用
2nd workshop on graph-based Algorithms for natural language processing, Textgraphs 2007
作者: Kapustin, Victor Jamsen, Anna Faculty of Philology Saint-Petersburg State University St.-Petersburg 199178 Russia
Degree distributions for word forms cooccurrences for large Russian text collections are obtained. Two power laws fit the distributions pretty good, thus supporting Dorogovtsev-Mendes model for Russian. Few different ... 详细信息
来源: 评论
Unsupervised natural language processing using graph models
Unsupervised natural language processing using graph models
收藏 引用
2007 Human language Technology Conference of the North American Chapter of the Association of Computational Linguistics, NAACL-HLT 2007
作者: Biemann, Chris NLP Dept. University of Leipzig Johannisgasse 26 Leipzig04103 Germany
In the past, NLP has always been based on the explicit or implicit use of linguistic knowledge. In classical computer linguistic applications explicit rule based approaches prevail, while machine learning algorithms u... 详细信息
来源: 评论
2006 IEEE ACL Spoken language Technology workshop, SLT 2006, proceedings
2006 IEEE ACL Spoken Language Technology Workshop, SLT 2006,...
收藏 引用
2006 IEEE ACL Spoken language Technology workshop, SLT 2006
The proceedings contain 62 papers. The topics discussed include: using POMDPS for dialog management;speech technology opportunities and challenges;information extraction from speech;graph-based methods for language pr... 详细信息
来源: 评论
Unsupervised information extraction approach using graph mutual reinforcement
Unsupervised information extraction approach using graph mut...
收藏 引用
11th Conference on Empirical methods in natural language Proceessing, EMNLP 2006, Held in Conjunction with COLING/ACL 2006
作者: Hassan, Hany Hassan, Ahmed Emam, Ossama IBM Cairo Technology Development Center P.O. Box 166 Al-Ahram Giza Egypt
Information Extraction (IE) is the task of extracting knowledge from unstructured text. We present a novel unsupervised approach for information extraction based on graph mutual reinforcement. The proposed approach do... 详细信息
来源: 评论
A fast and accurate method for detecting English-Japanese parallel texts
A fast and accurate method for detecting English-Japanese pa...
收藏 引用
2006 workshop on Multilingual language Resources and Interoperability, MLRI 2006
作者: Fukushima, Ken'ichi Taura, Kenjiro Chikayama, Takashi University of Tokyo Japan
Parallel corpus is a valuable resource used in various fields of multilingual natural language processing. One of the most significant problems in using parallel corpora is the lack of their availability. Researchers ... 详细信息
来源: 评论
Semi-supervised anaphora resolution in biomedical texts
Semi-supervised anaphora resolution in biomedical texts
收藏 引用
HLT-NAACL 2006 workshop on Linking natural language processing and Biology: Towards Deeper Biological Literature Analysis, BioNLP 2006
作者: Gasperin, Caroline Computer Laboratory University of Cambridge 15 JJ Thomson Avenue CambridgeCB3 0FD United Kingdom
Resolving anaphora is an important step in the identification of named entities such as genes and proteins in biomedical scientific articles. The goal of this work is to resolve associative and coreferential anaphoric... 详细信息
来源: 评论
COLING/ACL 2006 - 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, proceedings of the Student Research workshop
COLING/ACL 2006 - 21st International Conference on Computati...
收藏 引用
COLING/ACL 2006 Student Research workshop. SRW 2006 at the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, COLING/ACL 2006
The proceedings contain 15 papers. The topics discussed include: a flexible approach to natural language generation for disabled children;unsupervised part-of-speech tagging employing efficient graph clustering;sub-se...
来源: 评论