咨询与建议

限定检索结果

文献类型

  • 1,413 篇 会议
  • 54 册 图书
  • 27 篇 期刊文献

馆藏范围

  • 1,494 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,010 篇 工学
    • 901 篇 计算机科学与技术...
    • 410 篇 软件工程
    • 389 篇 电气工程
    • 131 篇 信息与通信工程
    • 122 篇 光学工程
    • 90 篇 生物工程
    • 65 篇 生物医学工程(可授...
    • 58 篇 电子科学与技术(可...
    • 38 篇 控制科学与工程
    • 34 篇 化学工程与技术
    • 29 篇 机械工程
    • 21 篇 仪器科学与技术
    • 17 篇 安全科学与工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 建筑学
    • 8 篇 土木工程
  • 347 篇 医学
    • 344 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 333 篇 理学
    • 158 篇 物理学
    • 147 篇 数学
    • 93 篇 生物学
    • 47 篇 统计学(可授理学、...
    • 32 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 69 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 12 篇 农学
    • 12 篇 作物学
  • 10 篇 法学
    • 9 篇 社会学
  • 6 篇 经济学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 142 篇 computer vision
  • 80 篇 image processing
  • 77 篇 image segmentati...
  • 54 篇 computer graphic...
  • 54 篇 feature extracti...
  • 52 篇 cameras
  • 46 篇 deep learning
  • 38 篇 shape
  • 35 篇 face recognition
  • 34 篇 image reconstruc...
  • 32 篇 artificial intel...
  • 30 篇 robustness
  • 28 篇 object detection
  • 28 篇 image color anal...
  • 25 篇 image enhancemen...
  • 25 篇 image edge detec...
  • 25 篇 pattern recognit...
  • 25 篇 layout
  • 24 篇 biometrics
  • 23 篇 image processing...

机构

  • 20 篇 indian statistic...
  • 19 篇 indian institute...
  • 17 篇 department of co...
  • 14 篇 computer vision ...
  • 12 篇 indian institute...
  • 11 篇 department of el...
  • 10 篇 indian inst tech...
  • 9 篇 indian stat inst...
  • 9 篇 indian institute...
  • 9 篇 indian inst tech...
  • 9 篇 indian institute...
  • 8 篇 indian institute...
  • 8 篇 department of el...
  • 8 篇 indian institute...
  • 8 篇 indian inst sci ...
  • 8 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 indian institute...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...

作者

  • 40 篇 chaudhury santan...
  • 29 篇 chaudhuri subhas...
  • 26 篇 mukherjee jayant...
  • 20 篇 das sukhendu
  • 19 篇 raman shanmugana...
  • 18 篇 santanu chaudhur...
  • 17 篇 balasubramanian ...
  • 16 篇 harit gaurav
  • 16 篇 lall brejesh
  • 15 篇 babu r. venkates...
  • 15 篇 chanda bhabatosh
  • 14 篇 mukherjee dipti ...
  • 13 篇 das partha prati...
  • 12 篇 biswas prabir ku...
  • 12 篇 mishra deepak
  • 11 篇 raman balasubram...
  • 11 篇 sukhendu das
  • 10 篇 biswas soma
  • 10 篇 bhowmick partha
  • 10 篇 bhavsar arnav

语言

  • 1,484 篇 英文
  • 7 篇 中文
  • 3 篇 其他
检索条件"任意字段=Proceedings of the Fourteenth Indian Conference on Computer Vision, Graphics and Image Processing"
1494 条 记 录,以下是1401-1410 订阅
排序:
Temporal Modeling of EEG Signals using Block Sparse Variational Bayes Framework  18
Temporal Modeling of EEG Signals using Block Sparse Variatio...
收藏 引用
proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Shruti Sharma Santanu Chaudhury Jayadeva Jayadeva Indian Institute of Technology Delhi
Compressed Sensing (CS) has emerged as an alternate method to acquire high dimensional signals effectively by exploiting the sparsity assumption. However, owing to non-sparse and non-stationary nature, it is extremely...
来源: 评论
BatchOut: Batch-level feature augmentation to improve robustness to adversarial examples  18
BatchOut: Batch-level feature augmentation to improve robust...
收藏 引用
proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Akshayvarun Subramanya Konda Reddy Mopuri R. Venkatesh Babu Video Analytics Lab Indian Institute of Science Bangalore India
Machine Learning models are known to be susceptible to small but structured changes to their inputs that can result in wrong inferences. It has been shown that such samples, called adversarial samples, can be created ... 详细信息
来源: 评论
ContextCLIP: Contextual Alignment of image-Text pairs on CLIP visual representations  22
ContextCLIP: Contextual Alignment of Image-Text pairs on CLI...
收藏 引用
proceedings of the Thirteenth indian conference on computer vision, graphics and image processing
作者: Chanda Grover Indra Deep Mastan Debayan Gupta Ashoka University India The LNM Institute of Information Technology Jaipur India
State-of-the-art empirical work has shown that visual representations learned by deep neural networks are robust in nature and capable of performing classification tasks on diverse datasets. For example, CLIP demonstr... 详细信息
来源: 评论
STTGC-Net: Spatial-Temporal Transformer with Graph Convolution for Skeleton-Based Action Recognition  23
STTGC-Net: Spatial-Temporal Transformer with Graph Convoluti...
收藏 引用
proceedings of the fourteenth indian conference on computer vision, graphics and image processing
作者: Tanishka Yagneshwar Snehasis Mukherjee Computer Science and Engineering Shiv Nadar Institute of Eminence IN Computer Science and Engineering Shiv Nadar Institute of Eminence Greater Noida India IN
Skeleton data plays an important role in human action recognition due to the compact and distinct information of human poses provided by the skeleton data. Skeleton-based action recognition is gaining interest due to ... 详细信息
来源: 评论
Semi-automatic segmentation of tissue cells from confocal microscope images
Semi-automatic segmentation of tissue cells from confocal mi...
收藏 引用
International conference on Pattern Recognition
作者: P.S.Umesh Adiga B.B. Chaudhuri K. Rodenacker Computer Vision & Pattern Recognition Unit Indian Statistical Institute Calcutta India Institute of Pathology GSF Munich Germany
We present a semi-automatic method for extracting the 3D boundary of the cells in a compact tissue cross-section photographed by a confocal microscope. The confocal microscope provides pictures at different depths of ... 详细信息
来源: 评论
Real time object tracking for high performance system using GPGPU
Real time object tracking for high performance system using ...
收藏 引用
International conference on Information processing (ICIP)
作者: Kinjal B. Mistree Ashutosh Dutt Shraddha V. Kothiya Department of Computer Engineering Chhotubhai Gopalbhai Patel Institute of Technology Bardoli India Indian Space Research Organization Ahmedabad India
Real time object tracking is the process of locating moving objects over time using the camera in video sequences in real time. The objective of object tracking is to associate target objects in consecutive video fram... 详细信息
来源: 评论
Estimation of Ball Possession Statistics in Soccer Video  18
Estimation of Ball Possession Statistics in Soccer Video
收藏 引用
proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Saikat Sarkar Amlan Chakrabarti Dipti Prasad Mukherjee Bangabasi College University of Calcutta Kolkata India A. K. Choudhury School of Information Technology University of Calcutta Kolkata India Indian Statistical Institute Kolkata India
In this work, we have estimated ball possession statistics from the video of a soccer match. The ball possession statistics is calculated based on the valid pass counts of two playing teams. We propose a player-ball i... 详细信息
来源: 评论
A novel SOM-based approach for active contour modeling
A novel SOM-based approach for active contour modeling
收藏 引用
Intelligent Sensors, Sensor Networks and Information processing conference (ISSNIP)
作者: Y.V. Venkatesh S.K. Raja N. Ramya Computer Vision Laboratory Department of Electrical Engineering Indian Institute of Science Bangalore India
We integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contour from images. We employ: (i) the feature points to guide the contour, as in the case of SOM-based ACMs; (ii) the gradient... 详细信息
来源: 评论
A Rapid Non-Linear Diffusion Compressed Sensing parallel MR image Reconstruction  18
A Rapid Non-Linear Diffusion Compressed Sensing parallel MR ...
收藏 引用
proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Ajin Joy Joseph Suresh Paul Indian Institute of Information Technology and Management-Kerala Trivandrum India
Optimization of the tradeoff between computation time and image quality is essential for reconstructing high-quality magnetic resonance image (MRI) from a limited number of acquired samples in a short time using compr... 详细信息
来源: 评论
image Co-segmentation using Graph Convolution Neural Network  18
Image Co-segmentation using Graph Convolution Neural Network
收藏 引用
proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Sayan Banerjee Avik Hati Subhasis Chaudhuri Rajbabu Velmurugan Indian Institute of Technology Bombay Mumbai India
image co-segmentation is jointly segmenting two or more images sharing common foreground objects. In this paper, we propose a novel graph convolution neural network (graph CNN) based end-to-end model for performing co... 详细信息
来源: 评论