咨询与建议

限定检索结果

文献类型

  • 1,414 篇 会议
  • 56 册 图书
  • 27 篇 期刊文献

馆藏范围

  • 1,497 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,009 篇 工学
    • 904 篇 计算机科学与技术...
    • 399 篇 软件工程
    • 390 篇 电气工程
    • 125 篇 信息与通信工程
    • 119 篇 光学工程
    • 83 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 54 篇 电子科学与技术(可...
    • 38 篇 控制科学与工程
    • 33 篇 化学工程与技术
    • 27 篇 机械工程
    • 17 篇 安全科学与工程
    • 16 篇 仪器科学与技术
    • 8 篇 材料科学与工程(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
  • 363 篇 医学
    • 360 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
  • 344 篇 理学
    • 174 篇 物理学
    • 143 篇 数学
    • 86 篇 生物学
    • 44 篇 统计学(可授理学、...
    • 31 篇 化学
    • 15 篇 系统科学
  • 87 篇 管理学
    • 65 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 11 篇 农学
    • 11 篇 作物学
  • 10 篇 法学
    • 9 篇 社会学
  • 5 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 132 篇 computer vision
  • 86 篇 image processing
  • 79 篇 image segmentati...
  • 53 篇 feature extracti...
  • 52 篇 computer graphic...
  • 46 篇 deep learning
  • 45 篇 cameras
  • 35 篇 face recognition
  • 35 篇 artificial intel...
  • 35 篇 shape
  • 30 篇 image reconstruc...
  • 29 篇 object detection
  • 29 篇 robustness
  • 28 篇 image color anal...
  • 24 篇 image enhancemen...
  • 23 篇 image edge detec...
  • 23 篇 biometrics
  • 23 篇 image processing...
  • 22 篇 pattern recognit...
  • 22 篇 layout

机构

  • 20 篇 indian statistic...
  • 19 篇 indian institute...
  • 17 篇 department of co...
  • 14 篇 computer vision ...
  • 12 篇 indian institute...
  • 11 篇 department of el...
  • 10 篇 indian inst tech...
  • 9 篇 indian stat inst...
  • 9 篇 indian institute...
  • 9 篇 indian inst tech...
  • 9 篇 indian institute...
  • 8 篇 indian institute...
  • 8 篇 department of el...
  • 8 篇 indian institute...
  • 8 篇 indian inst sci ...
  • 8 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 indian institute...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...

作者

  • 40 篇 chaudhury santan...
  • 29 篇 chaudhuri subhas...
  • 26 篇 mukherjee jayant...
  • 20 篇 das sukhendu
  • 19 篇 raman shanmugana...
  • 18 篇 santanu chaudhur...
  • 17 篇 balasubramanian ...
  • 16 篇 harit gaurav
  • 16 篇 lall brejesh
  • 15 篇 babu r. venkates...
  • 15 篇 chanda bhabatosh
  • 14 篇 mukherjee dipti ...
  • 13 篇 das partha prati...
  • 12 篇 biswas prabir ku...
  • 12 篇 mishra deepak
  • 11 篇 raman balasubram...
  • 11 篇 sukhendu das
  • 10 篇 biswas soma
  • 10 篇 bhowmick partha
  • 10 篇 bhavsar arnav

语言

  • 1,485 篇 英文
  • 9 篇 中文
  • 4 篇 其他
检索条件"任意字段=Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing"
1497 条 记 录,以下是341-350 订阅
排序:
Shrimps Classification Based on Multi-layer Feature Fusion  10
Shrimps Classification Based on Multi-layer Feature Fusion
收藏 引用
10th International conference on graphics and image processing (ICGIP)
作者: Zhang, Xiaoxue Wei, Zhiqiang Huang, Lei Ji, Xiaopeng Ocean Univ China Qingdao 266000 Shandong Peoples R China
This paper aims to highlight vision related tasks centered on "shrimps". With the further study of computer vision of marine life, we show that "shrimps" has been largely neglected in comparison to... 详细信息
来源: 评论
Single image dehazing using image boundary constraint and nearest neighborhood optimization  18
Single image dehazing using image boundary constraint and ne...
收藏 引用
proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Sidharth Gautam Tapan Kumar Gandhi B. K. panigrahi Indian Institute of Technology New Delhi India
Single image dehazing is an ill-posed problem that requires assumptions, priors and constraints to solve. In this paper, boundary constraint utilizing median filter has been proposed on the image radiance for the roug...
来源: 评论
Color image Denoising Based on Low-rank Tensor Train  10
Color Image Denoising Based on Low-rank Tensor Train
收藏 引用
10th International conference on graphics and image processing (ICGIP)
作者: Zhang, Yang Han, Zhi Tang, Yandong Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Beijing Peoples R China Chinese Acad Sci Inst Robot Beijing Peoples R China Chinese Acad Sci Inst Intelligent Mfg Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
Tensor has been widely used in computer vision due to its ability to maintain spatial structure information. Owning to the well-balanced unfolding matrices, the recently proposed tensor train (TT) decomposition can ma... 详细信息
来源: 评论
RECAL: Reuse of Established CNN Classifier Apropos Unsupervised Learning Paradigm  7th
RECAL: Reuse of Established CNN Classifier Apropos Unsupervi...
收藏 引用
7th National conference on computer vision, Pattern Recognition, image processing, and graphics, NCVPRIPG 2019
作者: Saha, Jayasree Mukherjee, Jayanta Indian Institute of Technology Kharagpur KharagpurWest Bengal721302 India
Recently, clustering with a deep network framework has attracted the attention of several researchers in the computer vision community. The Deep framework gains extensive attention due to its efficiency and scalabilit... 详细信息
来源: 评论
Spatio-Temporal Analysis of indian Urban infrastructure growth using Deep Learning and 3-channel RGB satellite images  10
Spatio-Temporal Analysis of Indian Urban infrastructure grow...
收藏 引用
10th International conference on graphics and image processing (ICGIP)
作者: Awasthi, Naman Pandharkar, Rohit Naik, Nikhil Welingkar Inst Management REDX WeSch Lab Mumbai Maharashtra India MIT Media Lab Boston MA USA
Land cover detection and classification has been an important component of Geographic Information Systems. They are used in policy planning, socio-economic analysis, cartography and Government scheme planning and eval... 详细信息
来源: 评论
Hierarchical Traffic Sign Recognition for Autonomous Driving  9th
Hierarchical Traffic Sign Recognition for Autonomous Driving
收藏 引用
9th International conference on Pattern Recognition Applications and Methods (ICPRAM)
作者: Sengar, Vartika Rameshan, Renu M. Ponkumar, Senthil Indian Inst Technol Sch Comp & Engn Mandi Himachal Prades India Continental Automot Components Pvt Ltd Bengaluru Karnataka India
Traffic Sign Recognition is very crucial for self-driving cars and Advanced Driver Assistance Systems. As the vehicle moves within a region or across regions, it encounters a variety of signs which needs to be recogni... 详细信息
来源: 评论
Compressive Sensing Based Privacy for Fall Detection  7th
Compressive Sensing Based Privacy for Fall Detection
收藏 引用
7th National conference on computer vision, Pattern Recognition, image processing, and graphics, NCVPRIPG 2019
作者: Gupta, Ronak Anand, Prashant Chaudhury, Santanu Lall, Brejesh Singh, Sanjay Department of Electrical Engineering Indian Institute of Technology Delhi New Delhi India Indian Institute of Technology Jodhpur Jheepasani India Cognitive Computing Group CSIR-CEERI Pilani India
Fall detection holds immense importance in the field of healthcare, where timely detection allows for instant medical assistance. In this context, we propose a 3D ConvNet architecture which consists of 3D Inception mo... 详细信息
来源: 评论
360x180 Stereoscopic Panoramas from Static Light Field Capturing  10
360x180 Stereoscopic Panoramas from Static Light Field Captu...
收藏 引用
10th International conference on graphics and image processing (ICGIP)
作者: Wang, Kai Wu, Chunhong Ren, Shaojie Xiao, Feng Liu, Yunluo Univ Sci & Technol Beijing Beijing Peoples R China Beijing FengYun Vis Technol Co Ltd Beijing Peoples R China
With the increasing demand in visual experience, visual effects with good immersion and stereoscopic sense have become one of the research hotpots in computer vision and computer graphics. This paper presents a stereo... 详细信息
来源: 评论
A Chaos Based Robust and Secure image Hashing Framework  18
A Chaos Based Robust and Secure Image Hashing Framework
收藏 引用
proceedings of the 11th indian conference on computer vision, graphics and image processing
作者: Satendra Pal Singh Gaurav Bhatnagar Indian Institute of Technology Jodhpur India
In this paper, a robust image hashing framework is presented using discrete cosine transformation and singular value decomposition. Firstly, the input image is normalized using geometric moment and normalized coeffici... 详细信息
来源: 评论
Exploring Temporal Differences in 3D Convolutional Neural Networks  7th
Exploring Temporal Differences in 3D Convolutional Neural Ne...
收藏 引用
7th National conference on computer vision, Pattern Recognition, image processing, and graphics, NCVPRIPG 2019
作者: Kanojia, Gagan Kumawat, Sudhakar Raman, Shanmuganathan Indian Institute of Technology Gandhinagar Gandhinagar India
Traditional 3D convolutions are computationally expensive, memory intensive, and due to large number of parameters, they often tend to overfit. On the other hand, 2D CNNs are less computationally expensive and less me... 详细信息
来源: 评论