咨询与建议

限定检索结果

文献类型

  • 1,385 篇 会议
  • 56 册 图书
  • 27 篇 期刊文献

馆藏范围

  • 1,468 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 998 篇 工学
    • 895 篇 计算机科学与技术...
    • 398 篇 软件工程
    • 390 篇 电气工程
    • 125 篇 信息与通信工程
    • 119 篇 光学工程
    • 84 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 56 篇 电子科学与技术(可...
    • 37 篇 控制科学与工程
    • 33 篇 化学工程与技术
    • 27 篇 机械工程
    • 17 篇 安全科学与工程
    • 16 篇 仪器科学与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
  • 352 篇 医学
    • 349 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
  • 327 篇 理学
    • 156 篇 物理学
    • 144 篇 数学
    • 87 篇 生物学
    • 44 篇 统计学(可授理学、...
    • 31 篇 化学
    • 15 篇 系统科学
  • 87 篇 管理学
    • 65 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 11 篇 农学
    • 11 篇 作物学
  • 10 篇 法学
    • 9 篇 社会学
  • 5 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 125 篇 computer vision
  • 74 篇 image segmentati...
  • 68 篇 image processing
  • 52 篇 computer graphic...
  • 51 篇 feature extracti...
  • 45 篇 cameras
  • 42 篇 deep learning
  • 35 篇 face recognition
  • 35 篇 shape
  • 33 篇 artificial intel...
  • 30 篇 image reconstruc...
  • 29 篇 object detection
  • 29 篇 robustness
  • 28 篇 image color anal...
  • 26 篇 image enhancemen...
  • 24 篇 image processing...
  • 23 篇 image edge detec...
  • 23 篇 pattern recognit...
  • 23 篇 biometrics
  • 22 篇 layout

机构

  • 20 篇 indian statistic...
  • 19 篇 indian institute...
  • 17 篇 department of co...
  • 14 篇 computer vision ...
  • 12 篇 indian institute...
  • 11 篇 department of el...
  • 10 篇 indian inst tech...
  • 9 篇 indian stat inst...
  • 9 篇 indian institute...
  • 9 篇 indian inst tech...
  • 9 篇 indian institute...
  • 8 篇 indian institute...
  • 8 篇 department of el...
  • 8 篇 indian institute...
  • 8 篇 indian inst sci ...
  • 8 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 indian institute...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...

作者

  • 40 篇 chaudhury santan...
  • 29 篇 chaudhuri subhas...
  • 26 篇 mukherjee jayant...
  • 20 篇 das sukhendu
  • 19 篇 raman shanmugana...
  • 18 篇 santanu chaudhur...
  • 17 篇 balasubramanian ...
  • 16 篇 harit gaurav
  • 16 篇 lall brejesh
  • 15 篇 babu r. venkates...
  • 15 篇 chanda bhabatosh
  • 14 篇 mukherjee dipti ...
  • 13 篇 das partha prati...
  • 12 篇 biswas prabir ku...
  • 12 篇 mishra deepak
  • 11 篇 raman balasubram...
  • 11 篇 sukhendu das
  • 10 篇 biswas soma
  • 10 篇 bhowmick partha
  • 10 篇 bhavsar arnav

语言

  • 1,457 篇 英文
  • 8 篇 中文
  • 3 篇 其他
检索条件"任意字段=Proceedings of the Thirteenth Indian Conference on Computer Vision, Graphics and Image Processing"
1468 条 记 录,以下是271-280 订阅
排序:
A Bag of Constrained Visual Words Model for image Representation  3rd
A Bag of Constrained Visual Words Model for Image Representa...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Mukherjee, Anindita Sil, Jaya Chowdhury, Ananda S. Dream Inst Technol Kolkata India IIEST Sibpur Howrah India Jadavpur Univ Kolkata 700032 India
We propose a bag of constrained visual words model for image representation. Each image under this model is considered to be an aggregation of patches. SURF features are used to describe each patch. Two sets of constr... 详细信息
来源: 评论
Diagnosis of Prostate Cancer with Support Vector Machine Using Multiwavelength Photoacoustic images  3rd
Diagnosis of Prostate Cancer with Support Vector Machine Usi...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Borkar, Aniket Sinha, Saugata Dhengre, Nikhil Chinni, Bhargava Dogra, Vikram Rao, Navalgund Visvesvaraya Natl Inst Technol Dept Elect & Commun Engn Nagpur Maharashtra India Univ Rochester Med Ctr Dept Imaging Sci Rochester NY 14642 USA
Photoacoustic (PA) imaging is an emerging soft tissue imaging modality which can be potentially used for the detection of prostate cancer. computer-aided diagnosis tools help in further enhancing the detection process... 详细信息
来源: 评论
Cosaliency Detection in images Using Structured Matrix Decomposition and Objectness Prior  3rd
Cosaliency Detection in Images Using Structured Matrix Decom...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Bardhan, Sayanti Jacob, Shibu Indian Inst Technol Madras Dept Comp Sci & Engn Visualizat & Percept Lab Chennai Tamil Nadu India Natl Inst Ocean Technol Marine Sensor Syst Chennai Tamil Nadu India
Cosaliency detection methods typically fail to perform in the situation where the foreground has multiple components. This paper proposes a novel framework, Cosaliency via Structured Matrix Decomposition (CSMD), for e... 详细信息
来源: 评论
CARTOONNET: Caricature Recognition of Public Figures  3rd
CARTOONNET: Caricature Recognition of Public Figures
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Shukla, Pushkar Gupta, Tanu Singh, Priyanka Raman, Balasubramanian Univ Calif Santa Barbara Santa Barbara CA 93106 USA Indian Inst Technol Roorkee Roorkee Uttar Pradesh India
Recognizing faces in the cartoon domain is a challenging problem since the facial features of cartoon caricatures of the same class vary a lot from each other. The aim of this project is to develop a system for recogn... 详细信息
来源: 评论
Cell Extraction and Horizontal-Scale Correction in Structured Documents  3rd
Cell Extraction and Horizontal-Scale Correction in Structure...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Srivastava, Divya Harit, Gaurav Indian Inst Technol Jodhpur Jodhpur Rajasthan India
Preprocessing techniques form an important task in document image analysis. In structured documents like forms, cheques, etc., there is a predefined space called frame field/cell for the user to fill the entry. When t... 详细信息
来源: 评论
Agriculture Parcel Boundary Detection from Remotely Sensed images  3rd
Agriculture Parcel Boundary Detection from Remotely Sensed I...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Khadanga, Ganesh Jain, Kamal Indian Inst Technol Roorkee Civil Engn Dept Geomat Grp Roorkee Uttar Pradesh India
The object-based image analysis (OBIA) is extensively used nowadays for classification of high-resolution satellite images (HRSI). In OBIA, the analysis is based on a group of pixels known as objects. It differs from ... 详细信息
来源: 评论
Deep Learning Framework for Detection of an Illicit Drug Abuser Using Facial image  3rd
Deep Learning Framework for Detection of an Illicit Drug Abu...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Gupta, Tanu Goyal, Meghna Kumar, Goutam Raman, Balasubramanian Indian Inst Technol Roorkee Roorkee Uttar Pradesh India
The detection of an illicit drug abuser by analyzing the subject's facial image has been an active topic in the field of machine learning research. The big question here is up to what extent and with what accuracy... 详细信息
来源: 评论
Faster RCNN-CNN-Based Joint Model for Bird Part Localization in images  3rd
Faster RCNN-CNN-Based Joint Model for Bird Part Localization...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Pankajakshan, Arjun Bhavsar, Arnav Indian Inst Technol Sch Comp & Elect Engn Mandi Himachal Prades India
Bird species classification is a challenging task in the field of computer vision because of its fine-grained nature, which in turn can lead to high interclass similarities. An important aspect form any fine-grained c... 详细信息
来源: 评论
Storm Tracking Using Geostationary Lightning Observation Videos  3rd
Storm Tracking Using Geostationary Lightning Observation Vid...
收藏 引用
3rd International conference on computer vision and image processing (CVIP)
作者: Joby, Nora Elizabeth George, Nimisha Susan Geethasree, M. N. NimmiKrishna, B. Thayyil, Noora Rahman Sankaran, Praveen Natl Inst Technol Calicut Kerala India
It was recently observed and proved by geoscientists that lightning observations from space peaked as a precursor to severe weather occurrences like flash floods, cloudbursts, tornadoes, etc. Thus, total lightning obs... 详细信息
来源: 评论
Selective mixing and voting network for semi-supervised domain generalization  21
Selective mixing and voting network for semi-supervised doma...
收藏 引用
12th indian conference on computer vision, graphics and image processing, ICVGIP 2021
作者: Arfeen, Ahmad Dutta, Titir Biswas, Soma Indian Institute of Science Karnataka Bangalore India
Domain generalization (DG) addresses the problem of generalizing classification performance across any unknown domain, by leveraging training samples from multiple source domains. Currently, the training process of th... 详细信息
来源: 评论