咨询与建议

限定检索结果

文献类型

  • 6,419 篇 期刊文献
  • 6,074 篇 会议
  • 274 篇 学位论文
  • 19 册 图书
  • 7 篇 资讯
  • 5 篇 专利
  • 2 篇 科技报告

馆藏范围

  • 12,800 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9,670 篇 工学
    • 5,871 篇 计算机科学与技术...
    • 3,127 篇 电气工程
    • 2,654 篇 软件工程
    • 1,760 篇 信息与通信工程
    • 1,711 篇 生物工程
    • 1,156 篇 控制科学与工程
    • 817 篇 生物医学工程(可授...
    • 775 篇 光学工程
    • 754 篇 仪器科学与技术
    • 684 篇 机械工程
    • 542 篇 电子科学与技术(可...
    • 371 篇 交通运输工程
    • 361 篇 测绘科学与技术
    • 273 篇 材料科学与工程(可...
    • 255 篇 环境科学与工程(可...
    • 238 篇 安全科学与工程
    • 220 篇 土木工程
    • 206 篇 化学工程与技术
  • 3,663 篇 理学
    • 2,079 篇 生物学
    • 1,341 篇 物理学
    • 566 篇 数学
    • 437 篇 化学
    • 305 篇 地球物理学
    • 207 篇 统计学(可授理学、...
  • 2,090 篇 医学
    • 1,630 篇 临床医学
    • 466 篇 基础医学(可授医学...
    • 350 篇 特种医学
  • 1,150 篇 管理学
    • 866 篇 管理科学与工程(可...
    • 304 篇 图书情报与档案管...
  • 330 篇 农学
    • 208 篇 作物学
  • 163 篇 艺术学
  • 132 篇 法学
  • 74 篇 教育学
  • 56 篇 经济学
  • 31 篇 军事学
  • 19 篇 文学
  • 3 篇 历史学
  • 1 篇 哲学

主题

  • 4,494 篇 deep learning
  • 872 篇 real-time system...
  • 789 篇 image processing
  • 720 篇 feature extracti...
  • 705 篇 深度学习
  • 688 篇 machine learning
  • 667 篇 object detection
  • 568 篇 training
  • 520 篇 convolutional ne...
  • 509 篇 image segmentati...
  • 408 篇 neural networks
  • 331 篇 computer vision
  • 319 篇 computational mo...
  • 294 篇 task analysis
  • 263 篇 accuracy
  • 258 篇 transfer learnin...
  • 258 篇 convolutional ne...
  • 215 篇 deep neural netw...
  • 201 篇 convolution
  • 195 篇 cameras

机构

  • 44 篇 中国科学院大学
  • 44 篇 武汉科技大学
  • 39 篇 univ chinese aca...
  • 21 篇 智能信息处理与实...
  • 15 篇 northwestern pol...
  • 14 篇 beijing inst tec...
  • 14 篇 univ chinese aca...
  • 14 篇 peng cheng lab p...
  • 13 篇 chitkara univers...
  • 12 篇 华中科技大学
  • 12 篇 北京交通大学
  • 12 篇 hunan univ coll ...
  • 12 篇 天津大学
  • 12 篇 univ sci & techn...
  • 12 篇 tsinghua univ de...
  • 12 篇 university of ch...
  • 12 篇 cent south univ ...
  • 12 篇 华南理工大学
  • 12 篇 tsinghua univ de...
  • 11 篇 beijing key labo...

作者

  • 20 篇 zhang lei
  • 19 篇 liu yang
  • 17 篇 li yang
  • 16 篇 wang wei
  • 14 篇 saponara sergio
  • 12 篇 wang jing
  • 12 篇 chen chen
  • 11 篇 wang lei
  • 11 篇 li rui
  • 11 篇 yang xiaofeng
  • 11 篇 liu jun
  • 11 篇 liu tian
  • 11 篇 li ying
  • 10 篇 wang dong
  • 9 篇 zhang tao
  • 9 篇 li xin
  • 9 篇 rodrigues joel j...
  • 9 篇 liu xin
  • 9 篇 zhang qian
  • 9 篇 wang tao

语言

  • 11,156 篇 英文
  • 1,203 篇 中文
  • 386 篇 其他
  • 25 篇 法文
  • 9 篇 朝鲜文
  • 8 篇 土耳其文
  • 4 篇 日文
  • 3 篇 俄文
  • 1 篇 德文
检索条件"任意字段=Real-Time Image Processing and Deep Learning 2020"
12800 条 记 录,以下是121-130 订阅
排序:
Slideflow: deep learning for digital histopathology with real-time whole-slide visualization
收藏 引用
BMC BIOINFORMATICS 2024年 第1期25卷 134页
作者: Dolezal, James M. Kochanny, Sara Dyer, Emma Ramesh, Siddhi Srisuwananukorn, Andrew Sacco, Matteo Howard, Frederick M. Li, Anran Mohan, Prajval Pearson, Alexander T. Univ Chicago Dept Med Sect Hematol Oncol Med Ctr Chicago IL 60637 USA Ohio State Univ Dept Internal Med Div Hematol Comprehens Canc Ctr Columbus OH USA Univ Chicago Dept Comp Sci Chicago IL USA
deep learning methods have emerged as powerful tools for analyzing histopathological images, but current methods are often specialized for specific domains and software environments, and few open-source options exist ... 详细信息
来源: 评论
Bubble evolution identification method based on U-Net deep learning
收藏 引用
SHIPS AND OFFSHORE STRUCTURES 2025年
作者: Gou, Yuxin Shi, Dongyan Wang, Jiuqiang Zhang, Haifeng Cui, Xiongwei Harbin Engn Univ Coll Mech & Elect Engn Harbin Peoples R China Harbin Engn Univ Coll Shipbldg Engn 145 Nantong St Harbin 150001 Heilongjiang Peoples R China
This study addresses the challenge of automated analysis of underwater bubble dynamics, as traditional methods for bubble detection often struggle with precision and real-time processing, requiring labour-intensive ma... 详细信息
来源: 评论
A novel hybrid Bayesian-optimized CNN-SVM deep learning model for real-time surface roughness classification and prediction based on in-process machined surface image analysis
收藏 引用
INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM 2025年 1-18页
作者: Arif, Abdul Rao, Ponugoti Gangadhara Prasad, Kalapala JNTUK Univ Coll Engn A Kakinada 533003 India Aditya Univ Dept Mech Engn Surampalem 533437 AP India JNTUK Dept Mech Engn Univ Coll Engn A Kakinada 533003 India
This study presents a novel hybrid Bayesian-optimized CNN-SVM deep learning model for real-time surface roughness classification and prediction based on in-process machined surface image analysis. The hybrid deep lear... 详细信息
来源: 评论
Speed-Up DDPM for real-time Underwater image Enhancement
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第5期34卷 3576-3588页
作者: Lu, Siqi Guan, Fengxu Zhang, Hanyu Lai, Haitao Harbin Engn Univ Coll Intelligent Syst Sci & Engn Harbin 150001 Heilongjiang Peoples R China
Underwater images often suffer from serious color bias and blurred features because of the effect of the water bodies on the light. To enhance underwater images, we present SU-DDPM, a method of real-time underwater im... 详细信息
来源: 评论
image processing and deep learning Based Road Object Detection System for Safe Transportation
Image Processing and Deep Learning Based Road Object Detecti...
收藏 引用
International Conference on Computing and Networking Technology (ICCNT)
作者: Rizvee Hassan Prito Md. Shafayat Hossain Md. Shajibul Islam Mehzabin Meem Md. Nawab Yousuf Ali Computer Science and Engineering Dept East West University Dhaka Bangladesh
Road object detection, a pivotal task in computer vision and artificial intelligence, is dedicated to the identification and precise localization of a diverse array of elements on roadways, including vehicles, pedestr... 详细信息
来源: 评论
Energy-efficient real-time visual image adversarial generation and processing algorithm for new energy vehicles
收藏 引用
JOURNAL OF real-time image processing 2024年 第5期21卷 161页
作者: Li, Yinghuan Liu, Jicheng North China Elect Power Univ Sch Econ & Management Beijing 102206 Peoples R China North China Elect Power Univ Beijing Key Lab New Energy & Low Carbon Dev Beijing 102206 Peoples R China
With the rapid development of deep learning in the last decade, generating and processing real-time images have become one of critical methods in intelligent driving systems for new energy vehicles. However, the real-... 详细信息
来源: 评论
A Systematic Review of real-time deep learning Methods for image-Based Cancer Diagnostics
收藏 引用
JOURNAL OF MULTIDISCIPLINARY HEALTHCARE 2024年 17卷 4411-4425页
作者: Sriraman, Harini Badarudeen, Saleena Vats, Saransh Balasubramanian, Prakash Vellore Inst Technol Sch Comp Sci & Engn Chennai 600127 India
deep learning (DL) drives academics to create models for cancer diagnosis using medical image processing because of its innate ability to recognize difficult-to-detect patterns in complex, noisy, and massive data. The... 详细信息
来源: 评论
A real-time traffic sign detection in intelligent transportation system using YOLOv8-based deep learning approach
收藏 引用
SIGNAL image AND VIDEO processing 2024年 第8-9期18卷 6103-6113页
作者: Tang, Mingdeng Chongqing Vocat Inst Safety & Tech Dept Network & Informat Secur Chongqing 404120 Peoples R China
Intelligent transportation systems rely heavily on accurate traffic sign detection (TSD) to enhance road safety and traffic management. Various methods have been explored in the literature for this purpose, with deep ... 详细信息
来源: 评论
Uncertainty-Aware real-time Visual Anomaly Detection With Conformal Prediction in Dynamic Indoor Environments
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第5期10卷 4468-4475页
作者: Saboury, Arya Uyguroglu, Mustafa Kemal Eastern Mediterranean Univ Dept Elect & Elect Engn TR-99628 Mersin Turkiye
This letter presents an efficient visual anomaly detection framework designed for safe autonomous navigation in dynamic indoor environments, such as university hallways. The approach employs an unsupervised autoencode... 详细信息
来源: 评论
Enhancing manufacturing process accuracy: A multidisciplinary approach integrating computer vision, machine learning, and control systems
收藏 引用
JOURNAL OF MANUFACTURING PROCESSES 2025年 142卷 453-467页
作者: Ramesh, Kaki Deshmukh, Sandip Ray, Tathagata Parimi, Chandu Birla Inst Sci & Technol Pilani Dept Mech Engn Hyderabad Campus Hyderabad 500078 Telangana India Birla Inst Sci & Technol Pilani Dept Comp Sci & Informat Syst Hyderabad Campus Hyderabad 500078 Telangana India Birla Inst Sci & Technol Pilani Dept Civil Engn Hyderabad Campus Hyderabad 500078 Telangana India
Manufacturing industries face significant challenges in producing high-quality, faultless products within limited timeframes. Conventional human-based inspection methods are still prone to errors and cannot guarantee ... 详细信息
来源: 评论