咨询与建议

限定检索结果

文献类型

  • 6,423 篇 期刊文献
  • 6,087 篇 会议
  • 236 篇 学位论文
  • 19 册 图书
  • 7 篇 资讯
  • 5 篇 专利

馆藏范围

  • 12,777 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9,663 篇 工学
    • 5,875 篇 计算机科学与技术...
    • 3,120 篇 电气工程
    • 2,659 篇 软件工程
    • 1,759 篇 信息与通信工程
    • 1,698 篇 生物工程
    • 1,153 篇 控制科学与工程
    • 808 篇 生物医学工程(可授...
    • 778 篇 光学工程
    • 751 篇 仪器科学与技术
    • 692 篇 机械工程
    • 533 篇 电子科学与技术(可...
    • 368 篇 交通运输工程
    • 363 篇 测绘科学与技术
    • 266 篇 材料科学与工程(可...
    • 247 篇 环境科学与工程(可...
    • 235 篇 安全科学与工程
    • 221 篇 土木工程
    • 207 篇 化学工程与技术
  • 3,627 篇 理学
    • 2,072 篇 生物学
    • 1,320 篇 物理学
    • 563 篇 数学
    • 419 篇 化学
    • 304 篇 地球物理学
    • 207 篇 统计学(可授理学、...
  • 2,083 篇 医学
    • 1,615 篇 临床医学
    • 464 篇 基础医学(可授医学...
    • 343 篇 特种医学
  • 1,150 篇 管理学
    • 867 篇 管理科学与工程(可...
    • 304 篇 图书情报与档案管...
  • 321 篇 农学
    • 206 篇 作物学
  • 164 篇 艺术学
  • 130 篇 法学
  • 74 篇 教育学
  • 54 篇 经济学
  • 31 篇 军事学
  • 19 篇 文学
  • 3 篇 历史学
  • 1 篇 哲学

主题

  • 4,497 篇 deep learning
  • 882 篇 real-time system...
  • 774 篇 image processing
  • 721 篇 feature extracti...
  • 713 篇 深度学习
  • 673 篇 machine learning
  • 671 篇 object detection
  • 573 篇 training
  • 512 篇 image segmentati...
  • 506 篇 convolutional ne...
  • 405 篇 neural networks
  • 330 篇 computer vision
  • 322 篇 computational mo...
  • 293 篇 task analysis
  • 272 篇 accuracy
  • 262 篇 convolutional ne...
  • 261 篇 transfer learnin...
  • 215 篇 deep neural netw...
  • 202 篇 convolution
  • 193 篇 cameras

机构

  • 45 篇 中国科学院大学
  • 44 篇 武汉科技大学
  • 39 篇 univ chinese aca...
  • 21 篇 智能信息处理与实...
  • 15 篇 northwestern pol...
  • 14 篇 beijing inst tec...
  • 14 篇 univ chinese aca...
  • 14 篇 peng cheng lab p...
  • 13 篇 chitkara univers...
  • 12 篇 华中科技大学
  • 12 篇 北京交通大学
  • 12 篇 hunan univ coll ...
  • 12 篇 天津大学
  • 12 篇 univ sci & techn...
  • 12 篇 tsinghua univ de...
  • 12 篇 university of ch...
  • 12 篇 cent south univ ...
  • 12 篇 tsinghua univ de...
  • 11 篇 beijing key labo...
  • 11 篇 wuhan univ sch c...

作者

  • 20 篇 zhang lei
  • 19 篇 liu yang
  • 17 篇 li yang
  • 15 篇 wang wei
  • 14 篇 saponara sergio
  • 12 篇 wang jing
  • 12 篇 chen chen
  • 11 篇 wang lei
  • 11 篇 li rui
  • 11 篇 yang xiaofeng
  • 11 篇 liu jun
  • 11 篇 liu tian
  • 11 篇 li ying
  • 10 篇 zhang tao
  • 10 篇 wang dong
  • 9 篇 li xin
  • 9 篇 rodrigues joel j...
  • 9 篇 zhang qian
  • 9 篇 wang tao
  • 9 篇 zhang yan

语言

  • 10,822 篇 英文
  • 1,223 篇 中文
  • 659 篇 其他
  • 26 篇 法文
  • 9 篇 朝鲜文
  • 8 篇 土耳其文
  • 3 篇 日文
  • 3 篇 俄文
  • 2 篇 德文
检索条件"任意字段=Real-Time Image Processing and Deep Learning 2020"
12777 条 记 录,以下是4601-4610 订阅
排序:
deep Architectures for Spatio-Temporal Sequence Recognition with Applications in Automatic Seizure Detection
Deep Architectures for Spatio-Temporal Sequence Recognition ...
收藏 引用
作者: Golmohammadi, Meysam Temple University
学位级别:Ph.D.
Scalp electroencephalograms (EEGs) are used in a broad range of health care institutions to monitor and record electrical activity in the brain. EEGs are essential in diagnosis of clinical conditions such as epilepsy,...
来源: 评论
TC-YOLOv5: rapid detection of floating debris on raspberry Pi 4B
收藏 引用
JOURNAL OF real-time image processing 2023年 第2期20卷 17-17页
作者: Li, Shun Liu, Shubo Cai, Zhaohui Liu, Yuan Chen, Geng Tu, Guoqing Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China Wuhan Univ Sch Natl Cybersecur Wuhan 430072 Peoples R China
Floating debris is a prominent indicator in measuring water quality. However, traditional object detection algorithms cannot meet the requirement of high accuracy due to the complexity of the environment. It is diffic... 详细信息
来源: 评论
SAR图像目标轮廓增强预处理模块设计
收藏 引用
系统工程与电子技术 2024年 第12期46卷 4010-4017页
作者: 龚峻扬 付卫红 刘乃安 西安电子科技大学通信工程学院 陕西西安710071
针对合成孔径雷达(synthetic aperture radar,SAR)图像中的3个通道数据均相同、以至于在使用基于深度学习的目标检测网络对其进行目标检测时会造成通道信息利用效率低下的问题,基于对SAR图像中各种目标物轮廓特点的研究,提出一种基于平... 详细信息
来源: 评论
Empty Cities: A Dynamic-Object-Invariant Space for Visual SLAM
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2021年 第2期37卷 433-451页
作者: Bescos, Berta Cadena, Cesar Neira, Jose Univ Zaragoza Dept Comp Sci & Syst Engn Zaragoza 50018 Spain Swiss Fed Inst Technol Mech & Proc Engn CH-8090 Zurich Switzerland Univ Zaragoza Inst Invest Ingn Aragon Zaragoza 50018 Spain
In this article, we present a data-driven approach to obtain the static image of a scene, eliminating dynamic objects that might have been present at the time of traversing the scene with a camera. The general objecti... 详细信息
来源: 评论
A Convolutional Neural Network for Beamforming and image Reconstruction in Passive Cavitation Imaging
收藏 引用
SENSORS 2023年 第21期23卷 8760-8760页
作者: Sharahi, Hossein J. Acconcia, Christopher N. Li, Matthew Martel, Anne Hynynen, Kullervo Sunnybrook Res Inst Phys Sci Platform Toronto ON M4N 3M5 Canada Univ Toronto Dept Med Biophys Toronto ON M5G 1L7 Canada Univ Toronto Inst Biomed Engn Toronto ON M5S 3G9 Canada
Convolutional neural networks (CNNs), initially developed for image processing applications, have recently received significant attention within the field of medical ultrasound imaging. In this study, passive cavitati... 详细信息
来源: 评论
Continuous Learned Primal Dual
Continuous Learned Primal Dual
收藏 引用
IEEE Workshop on Machine learning for Signal processing
作者: Christina Runkel Ander Biguri Carola-Bibiane Schönlieb Department of Applied Mathematics and Theoretical Physics University of Cambridge
Neural ordinary differential equations (Neural ODEs) propose the idea that a sequence of layers in a neural network is just a discretisation of an ODE, and thus can instead be directly modelled by a parameterised ODE.... 详细信息
来源: 评论
MFNet-LE: Multilevel fusion network with, Laplacian embedding for face presentation attacks detection
收藏 引用
IET image processing 2021年 第14期15卷 3608-3622页
作者: Niu, Sijie Qu, Xiaofeng Chen, Junting Gao, Xizhan Wang, Tingwei Dong, Jiwen Jinan Univ Sch Informat Sci & Engn Shandong Prov Key Lab Network Based Intelligent C Jinan Peoples R China Shandong Normal Univ Sch Informat Sci & Engn Jinan Peoples R China
Face detection is playing a pivotal role for crowd counting and abnormal events detection. However, it is vulnerable to face presentation attacks by printed photos, videos, and 3D masks of real human faces. Although n... 详细信息
来源: 评论
Applying Reservoir Computing and Machine learning Techniques for image Enhancement in Biomedical Imaging
Applying Reservoir Computing and Machine Learning Techniques...
收藏 引用
International Conference on Smart Communications and Networking (SmartNets)
作者: Andre Slonopas Adam Beatty Yenni Djajalaksana Department of Cybersecurity American Public University Sysytem (APUS) School of Security and Global Studies (SSGS) Charles Town WV International Council of E-Commerce Consultants (EC-Council) Academia Division Tampa FL
The paper presents a comprehensive study on the application of Machine learning (ML) in enhancing the contrast of biomedical images. This research is pivotal in addressing the challenges of low visibility and detail i... 详细信息
来源: 评论
deep learning Approach for Object Features Detection  4th
Deep Learning Approach for Object Features Detection
收藏 引用
4th International Conference on Communication, Device and Networking, ICCDN 2020
作者: Mitra, Ambik Mohanty, Debasis Ijaz, Muhammad Fazal Rana, Abu ul Hassan S. Deemed To Be University Bhubaneswar Odisha India iNurture Education Solutions Private Limited Bengaluru Karnataka India Department of Intelligent Mechatronics Engineering Sejong University Seoul05006 Korea Republic of
Object detection and identification system basically find real-world objects in a digital image or any video. In order to detect an object in any video or digital image, few components are necessary, which are a model... 详细信息
来源: 评论
Smart agriculture: real-time classification of green coffee beans by using a convolutional neural network
IET SMART CITIES
收藏 引用
IET SMART CITIES 2020年 第4期2卷 167-172页
作者: Huang, Nen-Fu Chou, Dong-Lin Lee, Chia-An Wu, Feng-Ping Chuang, An-Chi Chen, Yi-Hsien Tsai, Yin-Chun Natl Tsing Hua Univ Dept Comp Sci Hsinchu Taiwan
Coffee is an important economic crop and one of the most popular beverages worldwide. The rise of speciality coffees has changed people's standards regarding coffee quality. However, green coffee beans are often m... 详细信息
来源: 评论